首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Previous studies suggest that developing rat brain is susceptible to reduced thiamine intake. In order to assess the metabolic basis for this susceptibility, activities of three thiamine-dependent enzymes (pyruvate dehydrogenase complex, -ketoglutarate dehydrogenase and transketolase) were measured in homogenates of brain tissue from the offspring of thiamine-deficient mothers. Control groups of animals were pair-fed to equal food consumption with the thiamine-deficient animals. The study revealed region-selective delays in the establishment of adult activities of thiamine-dependent enzymes as a result of maternal thiamine deficiency. Pyruvate dehydrogenase complex activities in cerebral cortex were significantly reduced (by 20% P < 0.05); -ketoglutarate dehydrogenase activities were also reduced in cerebral cortex (by 30% P < 0.05). In the case of transketolase, enzyme activities were significantly reduced in cerebral cortex, cerebellum and brainstem. Following thiamine replenishment, defective enzyme activities were restored to normal in all cases. However, since thiamine-dependent enzymes are important for the establishment of adult patterns of cerebral energy metabolism and also in myelin synthesis, maternal thiamine deficiency resulting in reductions of thiamine-dependent enzymes at a vulnerable period in brain development could have serious metabolic consequences leading to permanent neurological sequellae in the offspring.  相似文献   

2.
An increased carbon flux and exploitation of metabolic pathways for the rapid generation of biosynthetic precursors is a common phenotype observed in breast cancer. To support this metabolic phenotype, cancer cells adaptively regulate the expression of glycolytic enzymes and nutrient transporters. However, activity of several enzymes involved in glucose metabolism requires an adequate supply of cofactors. In particular, vitamin B1 (thiamine) is utilized as an essential cofactor for metabolic enzymes that intersect at critical junctions within the glycolytic network. Intracellular availability of thiamine is facilitated by the activity of thiamine transporters and thiamine pyrophosphokinase-1 (TPK-1). Therefore, the objective of this study was to establish if the cellular determinants regulating thiamine homeostasis differ between breast cancer and normal breast epithelia. Employing cDNA arrays of breast cancer and normal breast epithelial tissues, SLC19A2, SLC25A19 and TPK-1 were found to be significantly up-regulated. Similarly, up-regulation was also observed in breast cancer cell lines compared to human mammary epithelial cells. Thiamine transport assays and quantitation of intracellular thiamine and thiamine pyrophosphate established a significantly greater extent of thiamine transport and free thiamine levels in breast cancer cell lines compared to human mammary epithelial cells. Overall, these findings demonstrate an adaptive response by breast cancer cells to increase cellular availability of thiamine.  相似文献   

3.
Thiaminase I of Bacillus thiaminolyticus is reversibly inactivated when it is incubated with its primary substrate, thiamine, or with one of several structural analogues of thiamine in the absence of an acceptor base. The inactivation reaction is pH and temperature dependent and is stochiometric with respect to thiamine and thiaminase I concentrations. One molecule of thiamine is cleaved for each molecule of enzyme inactivated. Inactivation is prevented or reversed by sulfhydryl-reducing agents. Active or reactivated thiaminase I migrate as a single band in polyacrylamide electrophoresis gels. Inactive thiaminase I appears to migrate as two separate bands. Active, inactive, and reactivated thiaminase I are immunologically similar. A possible mechanism for the inactivation of thiaminase I by its substrate is discussed.  相似文献   

4.
5.
The interrogation of beta cell gene expression and function in vitro has squarely shifted over the years from the study of rodent tumorigenic cell lines to the study of isolated rodent islets. Primary islets offer the distinct advantage that they more faithfully reflect the biology of intracellular signaling pathways and secretory responses. Whereas the method of islet isolation using tissue dissociating enzyme (TDE) preparations has been well established in many laboratories1-4, variations in the consistency of islet yield and quality from any given rodent strain limit the extent and feasibility of primary islet studies. These variations often occur as a result of the crude partially purified TDEs used in the islet isolation procedure; TDEs frequently exhibit lot-to-lot variations in activity and often require adjustments to the dose of enzyme used. A small number of reports have used purified TDEs for rodent cell isolations5, 6, but the practice is not widespread despite the routine use and advantages of purified TDEs for human islet isolations. In collaboration with VitaCyte, LLC (Indianapolis, IN), we developed a modified mouse islet isolation protocol based on that described by Gotoh7, 8, in which the TDEs are perfused directly into the pancreatic duct of mice, followed by crude tissue fractionation through a Histopaque gradient9, and isolation of purified islets. A significant difference in our protocol is the use of purified collagenase (CIzyme MA) and neutral protease (CIzyme BP) combination. The collagenase was characterized by the use of a6 fluorescence collagen degrading activity (CDA) assay that utilized fluorescently labeled soluble calf skin fibrils as substrate6. This substrate is more predictive of the kinetics of collagen degradation in the tissue matrix because it relies on native collagen as the substrate. The protease was characterized with a sensitive fluorescent kinetic assay10. Utilizing these improved assays along with more traditional biochemical analysis enable the TDE to be manufactured more consistently, leading to improved performance consistency between lots. The protocol described in here was optimized for maximal islet yield and optimal islet morphology using C57BL/6 mice. During the development of this protocol, several combinations of collagenase and neutral proteases were evaluated at different concentrations, and the final ratio of collagenase:neutral protease of 35:10 represents enzyme performance comparable to Sigma Type XI. Because significant variability in average islet yields from different strains of rats and mice have been reported, additional modifications of the TDE composition should be made to improve the yield and quality of islets recovered from different species and strains.  相似文献   

6.
Tricarboxylic acid cycle enzymes following thiamine deficiency   总被引:3,自引:0,他引:3  
Thiamine (Vitamin B1) deficiency (TD) leads to memory deficits and neurological disease in animals and humans. The thiamine-dependent enzymes of the tricarboxylic acid (TCA) cycle are reduced following TD and in the brains of patients that died from multiple neurodegenerative diseases. Whether reductions in thiamine or thiamine-dependent enzymes leads to changes in all TCA cycle enzymes has never been tested. In the current studies, the pyruvate dehydrogenase complex (PDHC) and all of enzymes of the TCA cycle were measured in the brains of TD mice. Non-thiamine-dependent enzymes such as succinate dehydrogenase (SDH), succinate thiokinase (STH) and malate dehydrogenase (MDH) were altered as much or more than thiamine-dependent enzymes such as the alpha-ketoglutarate dehydrogenase complex (KGDHC) (-21.5%) and PDHC (-10.5%). Succinate dehydrogenase (SDH) activity decreased by 27% and succinate thiokinase (STH) decreased by 24%. The reductions in these other enzymes may result from oxidative stress because of TD or because these other enzymes of the TCA cycle are part of a metabolon that respond as a group of enzymes. The results suggest that other TCA cycle enzymes should be measured in brains from patients that died from neurological disease in which thiamine-dependent enzymes are known to be reduced. The diminished activities of multiple TCA cycle enzymes may be important in our understanding of how metabolic lesions alter brain function in neurodegenerative disorders.  相似文献   

7.
We propose that adverse effects of the antibiotic metronidazole may be due, wholly or in part, to its conversion to a thiamine analog and consequent vitamin B1 antagonism. Consistent with this hypothesis, the drug is accepted as a substrate for the thiaminase (EC 2.5.1.2) elaborated as an exoenzyme by the human gut flora constituent Bacillus thiaminolyticus and is also a substrate for the intracellular thiaminase of the mollusk Venus mercenaria. The product, identified as the 1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-hydroxyethyl)-2-methyl-4 - nitroimidazolium cation, is a close structural analog of thiamine and is an effective inhibitor of thiamine pyrophosphokinase in vitro. Due to its susceptibility to nucleophilic attack, the analog is unstable, releasing inorganic nitrite under mild conditions. Enzymatic alkylation reactions such as that effected by thiaminase may have general pharmacological significance as a route of increasing the electrophilicity and/or reduction potential of drugs which are heterocyclic weak bases.  相似文献   

8.
Thiamine-dependent processes are diminished in brains of patients with several neurodegenerative diseases. The decline in thiamine-dependent enzymes can be readily linked to the symptoms and pathology of the disorders. Why the reductions in thiamine linked processes occur is an important experimental and clinical question. Oxidative stress (i.e. abnormal metabolism of free radicals) accompanies neurodegeneration and causes abnormalities in thiamine-dependent processes. The vulnerability of thiamine homeostasis to oxidative stress may explain deficits in thiamine homeostasis in numerous neurological disorders. The interactions of thiamine with oxidative processes may be part of a spiral of events that lead to neurodegeneration, because reductions in thiamine and thiamine-dependent processes promote neurodegeneration and cause oxidative stress. The reversal of the effects of thiamine deficiency by antioxidants, and amelioration of other forms of oxidative stress by thiamine, suggest that thiamine may act as a site-directed antioxidant. The data indicate that the interactions of thiamine-dependent processes with oxidative stress are critical in neurodegenerative processes.  相似文献   

9.
Abstract: When hippocampal cultures were deprived of glucose, massive release of lactate dehydrogenase (LDH), an indicator of neuronal death, occurred via NMDA receptor activation. Addition of pyridoxal phosphate (PLP; 1 and 10 µ M ) inhibited this LDH release in a concentration-dependent manner. Prior exposure to PLP evoked more potent inhibitory effects on LDH release compared with those treated at the onset of glucose deprivation. Furthermore, PLP inhibited the reduction of intracellular content of pyruvate induced by glucose deprivation, which was accompanied by the reversal of intracellular ATP depletion. A noteworthy elevation of extracellular glutamate in response to glucose deprivation was completely reversed by addition of PLP. Aminooxyacetic acid, a potent inhibitor of PLP-dependent enzymes, antagonized the effects of PLP on LDH release, pyruvate production, and ATP formation. These results suggest that PLP protects neurons from glucose deprivation-induced damage by enhancing the formation of energy-yielding products and relieving extracellular load of glutamate. The observed phenomena further indicate that PLP might be used prophylactically against neuronal death induced by metabolic disorders.  相似文献   

10.
Inhibitors of the mammalian target of rapamycin (mTORi) have clinical activity; however, the benefits of mTOR inhibition by rapamycin and rapamycin-derivatives (rapalogs) may be limited by a feedback mechanism that results in AKT activation. Increased AKT activity resulting from mTOR inhibition can be a result of increased signaling via the mTOR complex, TORC2. Previously, we published that arsenic trioxide (ATO) inhibits AKT activity and in some cases, decreases AKT protein expression. Therefore, we propose that combining ATO and rapamycin may circumvent the AKT feedback loop and increase the anti-tumor effects. Using a panel of breast cancer cell lines, we find that ATO, at clinically-achievable doses, can enhance the inhibitory activity of the mTORi temsirolimus. In all cell lines, temsirolimus treatment resulted in AKT activation, which was decreased by concomitant ATO treatment only in those cell lines where ATO enhanced growth inhibition. Treatment with rapalog also results in activated ERK signaling, which is decreased with ATO co-treatment in all cell lines tested. We next tested the toxicity and efficacy of rapamycin plus ATO combination therapy in a MDA-MB-468 breast cancer xenograft model. The drug combination was well-tolerated, and rapamycin did not increase ATO-induced liver enzyme levels. In addition, combination of these drugs was significantly more effective at inhibiting tumor growth compared to individual drug treatments, which corresponded with diminished phospho-Akt and phospho-ERK levels when compared with rapamycin-treated tumors. Therefore, we propose that combining ATO and mTORi may overcome the feedback loop by decreasing activation of the MAPK and AKT signaling pathways.  相似文献   

11.
Our studies showed that an abundant folate enzyme, 10-formyltetrahydrofolatedehydrogenase (FDH), is strongly down-regulated in several types of cancer on both the mRNA and the protein level. Transient expression of FDH in several human prostate cancer cell lines, a hepatocarcinoma cell line, HepG2, and a lung cancer cell line, A549, suppressed proliferation and resulted in cytotoxicity. In contrast, overexpression of a catalytically inactive FDH mutant did not inhibit proliferation, which suggests that the suppressor effect of FDH is a result of its enzymatic function. Because the FDH substrate, 10-formyltetrahydrofolate, is required for de novo purine biosynthesis, we hypothesized that the inhibitory effects of FDH occur through the depletion of intracellular 10-formyltetrahydrofolate followed by the loss of de novo purine biosynthesis. The ultimate impact is diminished DNA/RNA biosynthesis. Indeed, supplementation of FDH-overexpressing cells with 5-formyltetrahydrofolate or hypoxanthine reversed the FDH growth-inhibitory effects. Hence, down-regulation of FDH in tumors is proposed to be one of the cellular mechanisms that enhance proliferation.  相似文献   

12.
Here we report a number of novel JS-K structural analogues with sub-micromolar anti-proliferative activities against human leukemia cell lines HL-60 and U937; JS-K is the anti-cancer lead compound O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate. The ability of these compounds to generate intracellular nitric oxide correlated well with their observed anti-proliferative effects: analogues that had potent inhibitory activity against leukemia cells formed elevated levels of intracellular nitric oxide.  相似文献   

13.
Thiamine is an essential, positively charged (under physiologic conditions), water-soluble vitamin requiring transport into brain. Brain thiamine deficiency has been linked to neurodegenerative disease by subsequent impairment of thiamine-dependent enzymes used in brain glucose/energy metabolism. In this report, we evaluate brain uptake and efflux of [3H]thiamine using the in situ rat brain perfusion technique. To confirm brain distribution was not related to blood-brain barrier endothelial cell uptake, we compared parenchymal and cell distribution of [3H]thiamine using capillary depletion. Our work supports previous literature findings suggesting blood-brain barrier thiamine uptake is via a carrier-mediated transport mechanism, yet extends the literature by redefining the kinetics with more sensitive methodology. Significantly, [3H]thiamine brain accumulation was influenced by a considerable efflux rate. Evaluation of the efflux mechanism demonstrated increased stimulation by the presence of increased vascular thiamine. The influx transport mechanism and efflux rate were each comparable throughout brain regions despite documented differences in glucose and thiamine metabolism. The observation that [3H]thiamine blood-brain barrier influx and efflux is regionally homogenous may have significant relevance to neurodegenerative disease linked to thiamine deficiency.  相似文献   

14.
Vitamins B are co-enzymes participating in energy metabolic pathways. While some vitamins B are known affecting bone homeostasis, the effects of vitamin B1 (thiamine) on bone health remains unclear. In our study, we used cell counting kit-8, tartrate-resistant acid phosphatase stain, actin cytoskeleton stain, and pit formation assay to evaluate the effect of thiamine on osteoclast differentiation, formation, and function, respectively. Then we used dichloro-dihydro-fluorescein diacetate assay to investigate reactive oxygen species (ROS) generation and removal. Osteoporosis model by ovariectomy was established for animal experiments. We found that thiamine had inhibitory effect on osteoclast differentiation. And its inhibitory role on osteoclast differentiation is in a dose-dependent way. Mechanistically, ThDP suppresses intracellular ROS accumulation and unfolded protein response signaling during osteoclastogenesis via inhibiting Rac-Nox1/2/4 and intracellular inositol-requiring protein-1α/X-box-binding protein pathways, respectively. Osteoporotic mice treated with thiamine rich dietary showed better bone strength relative to thiamine deficient dietary. Our study explored the non-coenzyme inhibitory functions of B1 vitamin in receptor activator of nuclear factor κB ligand induced osteoclastogenesis and uncovered the significance of B1 vitamin in bone health.  相似文献   

15.
We cloned and sequenced cDNAs of the E1 alpha and E1 beta subunits of the branched chain alpha-ketoacid dehydrogenase complex (BCKDH) in two cell lines derived from two different Menonite MSUD patients (GM 1655, GM 1099). A T-to-A substitution which generates an asparagine in place of a tyrosine at amino acid 394 of the mature E1 alpha subunit was present in both alleles in these two cell lines, whereas cDNAs of the E1 beta subunit in these cell lines were identical to that of normal human lymphoid cell line and that of the clone from a human placenta cDNA library. It is suggested that the Menonite MSUD is caused by the missense mutation of the E1 alpha subunit of the BCKDH complex.  相似文献   

16.
The overall goal of this study was to evaluate optical molecular imaging approaches to determine the drug response of chemotherapy and molecular targeted agents in drug sensitive and drug resistant cell lines. The optical molecular imaging approaches selected in this study were based on changes in intracellular uptake and retention of choline and glucose molecules. The breast cancer cell lines were treated with a molecular targeted anti-EGFR therapy. The bladder cancer cell lines were treated with a conventional chemotherapy approach. Sensitivity of optical molecular imaging approach was also compared with conventional cell viability and cell growth inhibition assays. Results demonstrate that optical molecular imaging of changes in intracellular uptake of metabolites was effective in detecting drug susceptibility for both molecular targeted therapy in breast cancer cells and chemotherapy in bladder cancer cells. Between the selected metabolites for optical molecular imaging, changes in glucose metabolic activity showed higher sensitivity in discrimination between the drug sensitive and drug resistant cell lines. The results demonstrated that optical molecular imaging approaches more significantly sensitive as compared to the conventional cell viability and growth assays. Overall, the results demonstrate potential of optical molecular imaging of metabolic activity to improve sensitivity of in-vitro drug response assays.  相似文献   

17.
Recent studies have highlighted that early enhancement of the glycolytic pathway is a mode of maintaining the pro-inflammatory status of immune cells. Thiamine, a well-known co-activator of pyruvate dehydrogenase complex, a gatekeeping enzyme, shifts energy utilization of glucose from glycolysis to oxidative phosphorylation. Thus, we hypothesized that thiamine may modulate inflammation by alleviating metabolic shifts during immune cell activation. First, using allithiamine, which showed the most potent anti-inflammatory capacity among thiamine derivatives, we confirmed the inhibitory effects of allithiamine on the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and maturation process in dendritic cells. We applied the LPS-induced sepsis model to examine whether allithiamine has a protective role in hyper-inflammatory status. We observed that allithiamine attenuated tissue damage and organ dysfunction during endotoxemia, even when the treatment was given after the early cytokine release. We assessed the changes in glucose metabolites during LPS-induced dendritic cell activation and found that allithiamine significantly inhibited glucose-driven citrate accumulation. We then examined the clinical implication of regulating metabolites during sepsis by performing a tail bleeding assay upon allithiamine treatment, which expands its capacity to hamper the coagulation process. Finally, we confirmed that the role of allithiamine in metabolic regulation is critical in exerting anti-inflammatory action by demonstrating its inhibitory effect upon mitochondrial citrate transporter activity. In conclusion, thiamine could be used as an alternative approach for controlling the immune response in patients with sepsis.  相似文献   

18.
Wistar rats were divided into 4 groups and the following different synthetic diets were given for 1 month: group 1, calcium- and magnesium-deficient; group 2, calcium-deficient, magnesium-sufficient; group 3, calcium-sufficient, magnesium-deficient; group 4, calcium-sufficient, magnesium-sufficient (normal diet). After 1 month on these dietary regimens, the rats were killed. In calcium-deficiency (groups 1 and 2), thiamine concentration in synaptosomal and myelin-membrane fractions in the brain had decreased and the ratio of free thiamine to total thiamine and non-protein bound thiamine amount had increased in the brain. In magnesium-deficiency (groups 1 and 3), thiamine concentration in the liver and activities of thiamine-dependent enzymes in liver had decreased. These results indicate that calcium plays a role in binding thiamine in nerve membrane structures, which have a specific role in the conduction process of nervous tissues. In contrast, magnesium has little effect on thiamine in nervous tissues but may play an important role in thiamine-dependent enzyme systems in the liver.  相似文献   

19.
Several aromatic/heterocyclic sulfonamides possessing free amino, imino or hydrazino moieties were transformed into the corresponding N-morpholylthiocarbonylsulfenyl derivatives, by reaction with N-morpholyldithiocarbamate in the presence of oxidizing agents (NaClO or iodine). These compounds showed nanomolar inhibition against three CA isozymes, and interesting in vitro tumor cell growth inhibitory properties, against several leukemia, non-small cell lung, ovarian, melanoma, colon, CNS, renal, prostate and breast cancer cell lines.  相似文献   

20.
Potential thiaminase activity of Baltic herring Clupea harengus ranged from 0 to c. 55 nmol g-1 min-1 while potential thiaminase activity in Baltic salmon Salmo salar gastrointestinal (GI) contents ranged from 7 to c. 60 nmol g-1 min-1. About 30% of the Baltic herring analysed had a potential thiaminase activity equivalent to Baltic salmon GI contents. The results are consistent with the hypothesis that thiaminase in the forage fish of Baltic salmon may be an important link in the aetiology of the thiamine deficiency syndrome, M74, in Baltic salmon and indicate that Baltic salmon might feed selectively on Baltic herring with high thiaminase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号