首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
WIP proteins form a plant specific subfamily of C2H2 zinc finger (ZF) proteins. In this study, we functionally characterized the WIP domain, which consists of four ZF motifs, and discuss molecular functions for WIP proteins. Mutations in each of the ZFs lead to loss of function of the TT1/WIP1 protein in Arabiopsis thaliana. SV40 type nuclear localisation signals were detected in two of the ZFs and functionally characterized using GFP fusions as well as new mutant alleles identified by TILLING. Promoter swap experiments showed that selected WIP proteins are partially able to take over TT1 function. Activity of the AtBAN promoter, a potential TT1 target, could be increased by the addition of TT1 to the TT2-TT8-TTG1 regulatory complex.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Notch signalling pathway has been implicated as an important contributor to epithelial to myofibroblast transformation (EMT) in tumourigenesis. However, its role in kidney tubular cells undergoing EMT is not defined. This study assessed Notch signalling and the downstream effects on Snail in cultured proximal tubular epithelial cells. EMT was induced by exposure to transforming growth factor beta-1 (TGFβ1) and angiotensin II (AngII). The expressions of Notch1, Snail, E-cadherin and α-smooth muscle actin (α-SMA) were determined by Western blot. Matrix Metalloproteinase (MMP)-2 and -9 production were determined by zymography. The specific roles of Notch1-ICD and Snail were determined by gene expression or siRNA technique respectively. TGFβ1 and AngII resulted in EMT as characterized by the expected decrease in E-cadherin expression, an increase in α-SMA, MMP-2 and MMP-9 expression and associated increase of Notch1 and Snail. Over-expression of Notch1-ICD similarly resulted in increased Snail expression, loss of E-cadherin and increasedα-SMA. Inhibiting Snail degradation by pre-treatment with lithium chloride (LiCl) led to a further decrease in E-cadherin expression in cells concurrently exposed to TGFβ1 + AngII, confirming that Snail is a repressor of E-cadherin. Silencing of Snail blocked TGFβ1 + AngII induced EMT. Inhibition of Notch activation, by concurrent exposure to DAPT during the induction of EMT attenuated the decrease in E-cadherin expression, limited the increase in α-SMA and MMP-2 and -9 expression and decreased Snail expression. These results suggest a direct role for Notch signalling via the Snail pathway in the development of EMT and renal fibrosis.  相似文献   

11.
Zic family proteins have five C2H2-type zinc finger (ZF) motifs. We physicochemically characterized the folding properties of Zic ZFs. Alteration of chelation with zinc ions and of hydrophobic interactions changed circular dichroism spectra, suggesting that they caused structural changes. The motifs were heat stable, but electrostatic interactions had little effect on structural stability. These results highlight the importance of chelating interactions and hydrophobic interactions for the stability of the folding structure of Zic ZF proteins.  相似文献   

12.
13.
14.
15.
16.
17.
18.
There are over 10,000 C2H2-type zinc finger (ZF) domains distributed among more than 1,000 ZF proteins in the human genome. These domains are frequently observed to be involved in sequence-specific DNA binding, and uncharacterized domains are typically assumed to facilitate DNA interactions. However, some ZFs also facilitate binding to proteins or RNA. Over 100 Cys2-His2 (C2H2) ZF-protein interactions have been described. We initially attempted a bioinformatics analysis to identify sequence features that would predict a DNA- or protein-binding function. These efforts were complicated by several issues, including uncertainties about the full functional capabilities of the ZFs. We therefore applied an unbiased approach to directly examine the potential for ZFs to facilitate DNA or protein interactions. The human OLF-1/EBF associated zinc finger (OAZ) protein was used as a model. The human O/E-1-associated zinc finger protein (hOAZ) contains 30 ZFs in 6 clusters, some of which have been previously indicated in DNA or protein interactions. DNA binding was assessed using a target site selection (CAST) assay, and protein binding was assessed using a yeast two-hybrid assay. We observed that clusters known to bind DNA could facilitate specific protein interactions, but clusters known to bind protein did not facilitate specific DNA interactions. Our primary conclusion is that DNA binding is a more restricted function of ZFs, and that their potential for mediating protein interactions is likely greater. These results suggest that the role of C2H2 ZF domains in protein interactions has probably been underestimated. The implication of these findings for the prediction of ZF function is discussed.  相似文献   

19.
Loss of E-cadherin and epithelial to mesenchymal transition (EMT) are key steps in cancer progression. Reactive oxygen species (ROS) play significant roles in cellular physiology and homeostasis. Roles of E-cadherin (CDH1), EMT and ROS are intriguingly illustrated in many cancers without focusing their collective concert during cancer progression. We report that hydrogen peroxide (H2O2) treatment modulate CDH1 gene expression by epigenetic modification(s). Sublethal dosage of H2O2 treatment decrease E-cadherin, increase DNMT1, HDAC1, Snail, Slug and enrich H3K9me3 and H3K27me3 in the CDH1 promoter. The effect of H2O2 was attenuated by ROS scavengers; NAC, lupeol and beta-sitosterol. DNMT inhibitor, AZA prevented the H2O2 induced promoter-CpG-island methylation of CDH1. Treatment of cells with U0126 (inhibitor of ERK) reduced the expression of DNMT1, Snail and Slug, increased CDH1. This implicates that CDH1 is synergistically repressed by histone methylation, DNA methylation and histone deacetylation mediated chromatin remodelling and activation of Snail and Slug through ERK pathway. Increased ROS leads to activation of epigenetic machineries and EMT activators Snail/Slug which in their course of action inactivates CDH1 gene and lack of E-cadherin protein promotes EMT in breast cancer cells. ROS and ERK signaling facilitate epigenetic silencing and support the fact that subtle increase of ROS above basal level act as key cell signaling molecules. Free radical scavengers, lupeol and beta-sitosterol may be tested for therapeutic intervention of breast cancer. This work broadens the amplitude of epigenome and open avenues for investigations on conjoint effects of canonical and intrinsic metabolite signaling and epigenetic modulations in cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号