首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The nasopharynx is the main ecological niche of the human pathogen Staphylococcus aureus. Although colonization of the nares is asymptomatic, nasal carriage is a known risk factor for endogenous staphylococcal infection. We quantified S. aureus mRNA levels in nose swabs of persistent carriers to gain insight into the regulatory adaptation of the bacterium to the nasal environment. We could elucidate a general response of the pathogen to the surrounding milieu independent of the strain background or the human host. Colonizing bacteria preferentially express molecules necessary for tissue adherence or immune-evasion whereas toxins are down regulated. From the analysis of regulatory loci we found evidence for a predominate role of the essential two-component system WalKR of S. aureus. The results suggest that during persistent colonization the bacteria are metabolically active with a high cell surface turnover. The increased understanding of bacterial factors that maintain the colonization state can open new therapeutic options to control nasal carriage and subsequent infections.  相似文献   

2.

Background  

The natural habitat of Staphylococcus aureus is the moist squamous epithelium in the anterior nares. About 20% of the human population carry S. aureus permanently in their noses and another 60% of individuals are intermittent carriers. The ability of S. aureus to colonize the nasal epithelium is in part due to expression of surface proteins clumping factor B (ClfB) and the iron-regulated surface determinant A (IsdA), which promote adhesion to desquamated epithelial cells present in the anterior part of the nasal vestibule. S. aureus strain Newman defective in IsdA and ClfB exhibited reduced but not completely defective adherence to squamous cells in indicating that other cell surface components might also contribute.  相似文献   

3.
4.
Staphylococcus aureus is a major human pathogen and emergence of antibiotic resistance in clinical staphylococcal isolates raises concerns about our ability to control these infections. Cell wall-active antibiotics cause elevated synthesis of methionine sulfoxide reductases (Msrs: MsrA1 and MsrB) in S. aureus. MsrA and MsrB enzymes reduce S-epimers and R-epimers of methionine sulfoxide, respectively, that are generated under oxidative stress. In the S. aureus chromosome, there are three msrA genes (msrA1, msrA2 and msrA3) and one msrB gene. To understand the precise physiological roles of Msr proteins in S. aureus, mutations in msrA1, msrA2 and msrA3 and msrB genes were created by site-directed mutagenesis. These mutants were combined to create a triple msrA (msrA1, msrA2 and msrA3) and a quadruple msrAB (msrA1, msrA2, msrA3, msrB) mutant. These mutants were used to determine the roles of Msr proteins in staphylococcal growth, antibiotic resistance, adherence to human lung epithelial cells, pigment production, and survival in mice relative to the wild-type strains. MsrA1-deficient strains were sensitive to oxidative stress conditions, less pigmented and less adherent to human lung epithelial cells, and showed reduced survival in mouse tissues. In contrast, MsrB-deficient strains were resistant to oxidants and were highly pigmented. Lack of MsrA2 and MsrA3 caused no apparent growth defect in S. aureus. In complementation experiments with the triple and quadruple mutants, it was MsrA1 and not MsrB that was determined to be critical for adherence and phagocytic resistance of S. aureus. Overall, the data suggests that MsrA1 may be an important virulence factor and MsrB probably plays a balancing act to counter the effect of MsrA1 in S. aureus.  相似文献   

5.
6.
Effectiveness of saline suspension of Corynebacterium pseudodiphtheriticum containing spray was assessed in a 30-days chamber experiment modeling the effects of hyperthermia and polluted air on humans. Spray was targeted at eliminating Staphylococcus aureus from the nasal cavity of human subjects. Three of four volunteers became S. aureus carriers in the course of the experiment, and one was a chronic carrier of methicillin-resistant S. aureus (MRSA). Spray application eradicated S. aureus in three subjects and reduced its presence in the MRSA carrier. Results of the study suggest that C. pseudodiphtheriticum can be used for control of S. aureus in the nasal environment. However, further investigations are required.  相似文献   

7.
Despite increasing interest in coagulase-negative staphylococci (CoNS), little information is available about their bacteriophages. We isolated and sequenced three novel temperate Siphoviridae phages (StB12, StB27, and StB20) from the CoNS Staphylococcus hominis and S. capitis species. The genome sizes are around 40 kb, and open reading frames (ORFs) are arranged in functional modules encoding lysogeny, DNA metabolism, morphology, and cell lysis. Bioinformatics analysis allowed us to assign a potential function to half of the predicted proteins. Structural elements were further identified by proteomic analysis of phage particles, and DNA-packaging mechanisms were determined. Interestingly, the three phages show identical integration sites within their host genomes. In addition to this experimental characterization, we propose a novel classification based on the analysis of 85 phage and prophage genomes, including 15 originating from CoNS. Our analysis established 9 distinct clusters and revealed close relationships between S. aureus and CoNS phages. Genes involved in DNA metabolism and lysis and potentially in phage-host interaction appear to be widespread, while structural genes tend to be cluster specific. Our findings support the notion of a possible reciprocal exchange of genes between phages originating from S. aureus and CoNS, which may be of crucial importance for pathogenesis in staphylococci.  相似文献   

8.
Acquisition of nasal Staphylococcus aureus (S. aureus) colonization by contaminated hands is likely an important determinant of its nasal carriage rate in health care and lab setting. The objective of our cross-sectional study was to assess the prevalence of nasal methicillin-sensitive (MSSA) or -resistant Staphylococcus aureus (MRSA) carriage among health care professionals (HCPs) attending an international symposium and to study the association between compliance with hygiene rules, individual-related parameters, and medical conditions with nasal S. aureus carriage in this population. After obtaining consent, two nasal swabs were collected. Nasal MSSA and MRSA carriage was measured by the: i) molecular approach targeting spa, mecA and mecA-orfX junction sequences, and ii) culture on selective S. aureus media combined with mecA molecular detection of isolated strains. Information on compliance with hygiene rules, demographic variables, sector of activity and long-term medication was collected by anonymous questionnaire. The participation rate was 32.3%. In total, 176 subjects from 34 countries were included in the analysis. S. aureus was isolated from the nasal swabs of 57 (32.4%) subjects, of whom 3 (5.3%) harbored MRSA strains. Overall, 123 subjects reported working in microbiology laboratories with direct manipulation of S. aureus, and 29 acknowledged regular contacts with patients. In this exposed population, hydro-alcoholic solutions appeared to have a significant protective effect against nasal S. aureus carriage (OR = 0.36; 95% CI: 0.15–0.85). Hospital work was associated with increased risk of nasal S. aureus carriage (OR = 2.38; 95% CI: 1.07–5.29). The results of this study showed that compliance with basic rules of hygiene, such as the use of hydro-alcoholic solutions, could reduce the risk of nasal S. aureus colonization. Hydro-alcoholic solution could interrupt auto-transmission of the pathogen, consequently decreasing the overall nasal carriage rate, specifically in transient carriers.  相似文献   

9.
Staphylococcus aureus is an opportunistic pathogen that can colonize human and animal intestinal tracts, causing certain gastrointestinal diseases. The adherence of enteric pathogens to host intestinal epithelial cells is important for their pathogenesis. In the present study, Lactobacillus salivarius and Lactobacillus plantarum were investigated in vitro to examine their ability to competitively exclude S. aureus. Various factors involved in attachment, including bacterial status and cell concentration, growth phase, competition patterns, and surface-layer protein extracts, were also investigated. Live lactobacilli in the mid-log growth phase exhibited maximum inhibitory activity when lactobacilli were pre- or co-incubated with S. aureus. However, the inhibitory activity was significantly reduced when the lactobacilli were inactivated by heating or treated with LiCl. Furthermore, both lactobacilli possessed certain cell surface properties, such as hydrophobicity, autoaggregation, and coaggregation ability. L. salivarius and L. plantarum strongly inhibited S. aureus adherence to Caco-2 cells and their inhibition activity was significantly influenced by several factors that affect adhesion inhibition.  相似文献   

10.
Methicillin-resistant Staphylococcus aureus (MRSA) colonize most frequently in the anterior nares of the nose and cause serious infections all over the world. The aim of this study was to determine the nasal carriage rate of S. aureus and MRSA strains in Turkish elementary school children. We also analyzed molecular characterizations of MRSA strains by using pulse field gel electrophoresis (PFGE), multi locus sequence typing (MLST), staphylococcal chromosomal cassette mec (SCCmec) typing, and detection of the Panton-valentine leucocidin (PVL) gene. The nasal swabs were obtained from 4,050 children during a 4 month period in Ankara. In vitro antimicrobial susceptibility testing to 1 μg oxacillin and 30 μg cefoxitin was determined by a disk diffusion method. We found that the 1,001 of 4,050 (24.7%) children were colonized with S. aureus. Three S. aureus strains were resistant to oxacillin and cefoxitin. The rate of MRSA among all children was 0.07%. The MRSA strains revealed three different PFGE pattern. All MRSA isolates by harbored the SCCmec type IV element, but not the PVL gene. The two MRSA isolate belonged to sequence type (ST) 30, whereas the other one was a unique type. The results of this study demonstrated that S. aureus nasal carriage rate was consistent with previous studies. However, MRSA carriage rate was low. This study also indicated that the ST30-type IV without PVL gene MRSA clone may be expected to spread in Turkish community.  相似文献   

11.
Staphylococcus lugdunensis is a member of the coagulase-negative staphylococci and commonly found as part of the human skin flora. It is a significant cause of catheter-related bacteremia and also causes serious infections like native valve endocarditis in previously healthy individuals. We report the complete genome sequence of this medically important bacterium.Staphylococcus lugdunensis is a member of the coagulase-negative staphylococci (CoNS) commonly colonizing the human skin and mucosal membranes. While the genus Staphylococcus contains 48 named species currently, only a few species, notably S. aureus, are coagulase positive. Thus, the phenotypic characteristic is routinely tested in the medical microbiological laboratory for rapid differentiation of the highly pathogenic S. aureus from the other staphylococci. Among the CoNS, only a few species are known to cause human disease, usually in the form of opportunistic infections only (6). However, S. lugdunensis is an important exception (3). Besides causing catheter-related bacteremia similar to other CoNS, it causes a variety of severe nosocomial and community-acquired infections, including native valve endocarditis, a devastating and potentially fatal disease that can affect previously healthy individuals. Another unusual feature are the susceptibilities of S. lugdunensis isolates to multiple antimicrobial agents even when the incidence of multiple-drug-resistant CoNS and S. aureus occurrences are increasing in both hospital and community settings (4, 5).The genome sequence of S. lugdunensis strain HKU09-01 was determined by high-throughput sequencing performed on a GS FLX system (Roche Diagnostics, Basel, Switzerland), with approximately 45-fold coverage of the genome. This clinical strain was previously isolated from the culture of pus from a skin swab. Genome assembly was performed using the Newbler assembler, resulting in 30 large contigs (>500 bp in size). The contigs were then ordered and oriented into one scaffold using OSLay (11). The genome-finishing strategy for S. lugdunensis was similar to that employed for our previously sequenced Laribacter hongkongensis genome (12). Briefly, gap closures were performed by genomic PCR followed by DNA sequencing of amplification products on an ABI 3130xl sequencer (Applied Biosystems, CA). The finished sequence was validated by genome macrorestriction analysis using multiple rare-cutting enzymes and visualization by pulsed-field gel electrophoresis. Protein coding regions were predicted with Glimmer3 (2), and automatic genome annotation was performed on the RAST server (1). Additionally, annotation of tRNA and transfer-messenger RNA (tmRNA) genes was performed using tRNAScan-SE (10) and ARAGORN (9). Identification of rRNA genes was performed using RNAmmer (8).The genome of S. lugdunensis strain HKU09-01 consists of a circular 2,658,366-bp chromosome with G+C content of 33.87%, similar to those of other staphylococci. No plasmids are present in the sequenced strain. The genome contains 61 tRNA genes for all amino acids and 2,489 predicted protein-coding genes. Eight putative genomic islands were identified, and one actually consists of a pair of duplicated 32-kb genomic regions. Similar to Staphylococcus saprophyticus (7), but different from the other staphylococci, the genome contains 6 rRNA operons, one of them having the unusual organization 5S-16S-23S-5S.With the availability of the present genome sequence, S. lugdunensis now joins other staphylococcal species with human pathogenic potential, like S. aureus, S. epidermidis, S. haemolyticus, and S. saprophyticus, to have at least one reference genome available. Further in-depth analysis will be necessary to fully elucidate the genomic differences that may explain the variation in virulence of the staphylococcal species.  相似文献   

12.

Introduction

Reintroduction of endangered animals as part of conservational programs bears the risk of importing human pathogens from the sanctuary to the natural habitat. One bacterial pathogen that serves as a model organism to analyze this transmission is Staphylococcus aureus as it can colonize and infect both humans and animals. The aim of this study was to evaluate the utility of various biological samples to monitor S. aureus colonization in great apes and lemurs.

Methods

Mucosal swabs from wild lemurs (n=25, Kirindy, Madagascar), feces, oral and genital swabs from captive chimpanzees (n=58, Ngamba and Entebbe, Uganda) and fruit wadges and feces from wild chimpanzees (n=21, Taï National Parc, Côte d’Ivoire) were screened for S. aureus. Antimicrobial resistance and selected virulence factors were tested for each isolate. Sequence based genotyping (spa typing, multilocus sequence typing) was applied to assess the population structure of S. aureus.

Results

Oro-pharyngeal carriage of S. aureus was high in lemurs (72%, n=18) and captive chimpanzees (69.2%, n=27 and 100%, n=6, respectively). Wild chimpanzees shed S. aureus through feces (43.8, n=7) and fruit wadges (54.5, n=12). Analysis of multiple sampling revealed that two samples are sufficient to detect those animals which shed S. aureus through feces or fruit wadges. Genotyping showed that captive animals are more frequently colonized with human-associated S. aureus lineages.

Conclusion

Oro-pharyngeal swabs are useful to screen for S. aureus colonization in apes and lemurs before reintroduction. Duplicates of stool and fruit wadges reliably detect S. aureus shedding in wild chimpanzees. We propose to apply these sampling strategies in future reintroduction programs to screen for S. aureus colonization. They may also be useful to monitor S. aureus in wild populations.  相似文献   

13.
Staphylococcus aureus is an opportunistic pathogen able to colonize the upper respiratory tract and skin surfaces in mammals. Methicillin-resistant S. aureus ST398 is prevalent in pigs in Europe and North America. However, the mechanism of successful pig colonization by MRSA ST398 is poorly understood. To study MRSA colonization in pigs, an ex vivo model consisting of porcine nasal mucosa explants cultured at an air-liquid interface was evaluated. In cultured mucosa explants from the surfaces of the ventral turbinates and septum of the pig nose no changes in cell morphology and viability were observed up to 72 h. MRSA colonization on the explants was evaluated followed for three MRSA ST398 isolates for 180 minutes. The explants were incubated with 3×108 CFU/ml in PBS for 2 h to allow bacteria to adhere to the explants surface. Next the explants were washed and in the first 30 minutes post adhering time, a decline in the number of CFU was observed for all MRSA. Subsequently, the isolates showed either: bacterial growth, no growth, or a further reduction in bacterial numbers. The MRSA were either localized as clusters between the cilia or as single bacteria on the cilia surface. No morphological changes in the epithelium layer were observed during the incubation with MRSA. We conclude that porcine nasal mucosa explants are a valuable ex vivo model to unravel the interaction of MRSA with nasal tissue.  相似文献   

14.
15.
Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8), ST22 (CC22) and ST36(CC30)] and two pig-associated [ST398 (CC398) and ST433(CC30)] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame® adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1) human and porcine ST398; mix 2) human ST36 and porcine ST433; and mix 3) human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001). In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs.  相似文献   

16.

Background

Staphylococcus aureus permanently colonizes the vestibulum nasi of one-fifth of the human population, which is a risk factor for autoinfection. The precise mechanisms whereby S. aureus colonizes the nose are still unknown. The staphylococcal cell-wall protein clumping factor B (ClfB) promotes adhesion to squamous epithelial cells in vitro and might be a physiologically relevant colonization factor.

Methods and Findings

We define the role of the staphylococcal cytokeratin-binding protein ClfB in the colonization process by artificial inoculation of human volunteers with a wild-type strain and its single locus ClfB knock-out mutant. The wild-type strain adhered to immobilized recombinant human cytokeratin 10 (CK10) in a dose-dependent manner, whereas the ClfB mutant did not. The wild-type strain, when grown to the stationary phase in a poor growth medium, adhered better to CK10, than when the same strain was grown in a nutrient-rich environment. Nasal cultures show that the mutant strain is eliminated from the nares significantly faster than the wild-type strain, with a median of 3 ± 1 d versus 7 ± 4 d (p = 0.006). Furthermore, the wild-type strain was still present in the nares of 3/16 volunteers at the end of follow-up, and the mutant strain was not.

Conclusions

The human colonization model, in combination with in vitro data, shows that the ClfB protein is a major determinant of nasal-persistent S. aureus carriage and is a candidate target molecule for decolonization strategies.  相似文献   

17.
Seventy-eight staphylococcal strains were isolated from surgical-site, blood-stream and other hospital-acquired infections. Eighteen isolates were determined as methicillin (MET)-resistant S. aureus (MRSA), while the remaining were MET-resistant coagulase-negative staphylococci (CoNS). Fifty percent of CoNS strains were multiresistant, while 10 % of isolates were resistant only to β-lactams. Clinical isolates of CoNS were generally more resistant to antimicrobial agents than S. aureus strains. Thirty-nine % of S. aureus strains were resistant only to β-lactams. None of the MRSA strains carried ileS-2 gene; this gene was found in two strains of S. epidermidis.  相似文献   

18.
19.

Background

Preoperative screening for nasal S. aureus carriage, followed by eradication treatment of identified carriers with nasal mupirocine ointment and chlorhexidine soap was highly effective in preventing deep-seated S. aureus infections. It is unknown how cost-effectiveness of this intervention is affected by suboptimal S. aureus screening. We determined cost-effectiveness of different preoperative S. aureus screening regimes.

Methods

We compared different screening scenarios (ranging from treating all patients without screening to treating only identified S. aureus carriers) to the base case scenario without any screening and treatment. Screening and treatment costs as well as costs and mortality due to deep-seated S. aureus infection were derived from hospital databases and prospectively collected data, respectively.

Results

As compared to the base case scenario, all scenarios are associated with improved health care outcomes at reduced costs. Treating all patients without screening is most cost-beneficial, saving €7339 per life year gained, as compared to €3330 when only identified carriers are treated. In sensitivity analysis, outcomes are susceptible to the sensitivity of the screening test and the efficacy of treatment. Reductions in these parameters would reduce the cost-effectiveness of scenarios in which treatment is based on screening. When only identified S. aureus carriers are treated costs of screening should be less than €6.23 to become the dominant strategy.

Conclusions

Preoperative screening and eradication of S. aureus carriage to prevent deep-seated S. aureus infections saves both life years and medical costs at the same time, although treating all patients without screening is the dominant strategy, resulting in most health gains and largest savings.  相似文献   

20.
Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI) tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA) mutant (ΔtagO) failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl) tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号