首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways.  相似文献   

2.
3.
4.
Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The algorithm is implemented and available at http://cps.kaist.ac.kr/∼ckhong/tools/download/PAD.tar.gz.  相似文献   

5.
MOTIVATION: In model organisms such as yeast, large databases of protein-protein and protein-DNA interactions have become an extremely important resource for the study of protein function, evolution, and gene regulatory dynamics. In this paper we demonstrate that by integrating these interactions with widely-available mRNA expression data, it is possible to generate concrete hypotheses for the underlying mechanisms governing the observed changes in gene expression. To perform this integration systematically and at large scale, we introduce an approach for screening a molecular interaction network to identify active subnetworks, i.e., connected regions of the network that show significant changes in expression over particular subsets of conditions. The method we present here combines a rigorous statistical measure for scoring subnetworks with a search algorithm for identifying subnetworks with high score. RESULTS: We evaluated our procedure on a small network of 332 genes and 362 interactions and a large network of 4160 genes containing all 7462 protein-protein and protein-DNA interactions in the yeast public databases. In the case of the small network, we identified five significant subnetworks that covered 41 out of 77 (53%) of all significant changes in expression. Both network analyses returned several top-scoring subnetworks with good correspondence to known regulatory mechanisms in the literature. These results demonstrate how large-scale genomic approaches may be used to uncover signalling and regulatory pathways in a systematic, integrative fashion.  相似文献   

6.
7.
8.

Background  

Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks.  相似文献   

9.
10.
High-throughput technologies have led to the generation of an increasing amount of data in different areas of biology. Datasets capturing the cell’s response to its intra- and extra-cellular microenvironment allows such data to be incorporated as signed and directed graphs or influence networks. These prior knowledge networks (PKNs) represent our current knowledge of the causality of cellular signal transduction. New signalling data is often examined and interpreted in conjunction with PKNs. However, different biological contexts, such as cell type or disease states, may have distinct variants of signalling pathways, resulting in the misinterpretation of new data. The identification of inconsistencies between measured data and signalling topologies, as well as the training of PKNs using context specific datasets (PKN contextualization), are necessary conditions to construct reliable, predictive models, which are current challenges in the systems biology of cell signalling. Here we present PRUNET, a user-friendly software tool designed to address the contextualization of a PKNs to specific experimental conditions. As the input, the algorithm takes a PKN and the expression profile of two given stable steady states or cellular phenotypes. The PKN is iteratively pruned using an evolutionary algorithm to perform an optimization process. This optimization rests in a match between predicted attractors in a discrete logic model (Boolean) and a Booleanized representation of the phenotypes, within a population of alternative subnetworks that evolves iteratively. We validated the algorithm applying PRUNET to four biological examples and using the resulting contextualized networks to predict missing expression values and to simulate well-characterized perturbations. PRUNET constitutes a tool for the automatic curation of a PKN to make it suitable for describing biological processes under particular experimental conditions. The general applicability of the implemented algorithm makes PRUNET suitable for a variety of biological processes, for instance cellular reprogramming or transitions between healthy and disease states.  相似文献   

11.
Systematic, genome-wide loss-of-function experiments can be used to identify host factors that directly or indirectly facilitate or inhibit the replication of a virus in a host cell. We present an approach that combines an integer linear program and a diffusion kernel method to infer the pathways through which those host factors modulate viral replication. The inputs to the method are a set of viral phenotypes observed in single-host-gene mutants and a background network consisting of a variety of host intracellular interactions. The output is an ensemble of subnetworks that provides a consistent explanation for the measured phenotypes, predicts which unassayed host factors modulate the virus, and predicts which host factors are the most direct interfaces with the virus. We infer host-virus interaction subnetworks using data from experiments screening the yeast genome for genes modulating the replication of two RNA viruses. Because a gold-standard network is unavailable, we assess the predicted subnetworks using both computational and qualitative analyses. We conduct a cross-validation experiment in which we predict whether held-aside test genes have an effect on viral replication. Our approach is able to make high-confidence predictions more accurately than several baselines, and about as well as the best baseline, which does not infer mechanistic pathways. We also examine two kinds of predictions made by our method: which host factors are nearest to a direct interaction with a viral component, and which unassayed host genes are likely to be involved in viral replication. Multiple predictions are supported by recent independent experimental data, or are components or functional partners of confirmed relevant complexes or pathways. Integer program code, background network data, and inferred host-virus subnetworks are available at http://www.biostat.wisc.edu/~craven/chasman_host_virus/.  相似文献   

12.
In order to understand the behavior of a gene regulatory network, it is essential to know the genes that belong to it. Identifying the correct members (e.g., in order to build a model) is a difficult task even for small subnetworks. Usually only few members of a network are known and one needs to guess the missing members based on experience or informed speculation. It is beneficial if one can additionally rely on experimental data to support this guess. In this work we present a new method based on formal concept analysis to detect unknown members of a gene regulatory network from gene expression time series data. We show that formal concept analysis is able to find a list of candidate genes for inclusion into a partially known basic network. This list can then be reduced by a statistical analysis so that the resulting genes interact strongly with the basic network and therefore should be included when modeling the network. The method has been applied to the DNA repair system of Mycobacterium tuberculosis. In this application, our method produces comparable results to an already existing method of component selection while it is applicable to a broader range of problems.  相似文献   

13.
MOTIVATION: Inferring the genetic interaction mechanism using Bayesian networks has recently drawn increasing attention due to its well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. RESULTS: We propose a novel method to infer genetic networks by alleviating the shortage of available mRNA expression data with prior knowledge. We call the proposed method 'modularized network learning' (MONET). Firstly, the proposed method divides a whole gene set to overlapped modules considering biological annotations and expression data together. Secondly, it infers a Bayesian network for each module, and integrates the learned subnetworks to a global network. An algorithm that measures a similarity between genes based on hierarchy, specificity and multiplicity of biological annotations is presented. The proposed method draws a global picture of inter-module relationships as well as a detailed look of intra-module interactions. We applied the proposed method to analyze Saccharomyces cerevisiae stress data, and found several hypotheses to suggest putative functions of unclassified genes. We also compared the proposed method with a whole-set-based approach and two expression-based clustering approaches.  相似文献   

14.

Background

Boolean network modeling has been widely used to model large-scale biomolecular regulatory networks as it can describe the essential dynamical characteristics of complicated networks in a relatively simple way. When we analyze such Boolean network models, we often need to find out attractor states to investigate the converging state features that represent particular cell phenotypes. This is, however, very difficult (often impossible) for a large network due to computational complexity.

Results

There have been some attempts to resolve this problem by partitioning the original network into smaller subnetworks and reconstructing the attractor states by integrating the local attractors obtained from each subnetwork. But, in many cases, the partitioned subnetworks are still too large and such an approach is no longer useful. So, we have investigated the fundamental reason underlying this problem and proposed a novel efficient way of hierarchically partitioning a given large network into smaller subnetworks by focusing on some attractors corresponding to a particular phenotype of interest instead of considering all attractors at the same time. Using the definition of attractors, we can have a simplified update rule with fixed state values for some nodes. The resulting subnetworks were small enough to find out the corresponding local attractors which can be integrated for reconstruction of the global attractor states of the original large network.

Conclusions

The proposed approach can substantially extend the current limit of Boolean network modeling for converging state analysis of biological networks.
  相似文献   

15.
Biological networks, such as those describing gene regulation, signal transduction, and neural synapses, are representations of large-scale dynamic systems. Discovery of organizing principles of biological networks can be enhanced by embracing the notion that there is a deep interplay between network structure and system dynamics. Recently, many structural characteristics of these non-random networks have been identified, but dynamical implications of the features have not been explored comprehensively. We demonstrate by exhaustive computational analysis that a dynamical property—stability or robustness to small perturbations—is highly correlated with the relative abundance of small subnetworks (network motifs) in several previously determined biological networks. We propose that robust dynamical stability is an influential property that can determine the non-random structure of biological networks.  相似文献   

16.
In this paper, we present a novel approach Bio-IEDM (biomedical information extraction and data mining) to integrate text mining and predictive modeling to analyze biomolecular network from biomedical literature databases. Our method consists of two phases. In phase 1, we discuss a semisupervised efficient learning approach to automatically extract biological relationships such as protein-protein interaction, protein-gene interaction from the biomedical literature databases to construct the biomolecular network. Our method automatically learns the patterns based on a few user seed tuples and then extracts new tuples from the biomedical literature based on the discovered patterns. The derived biomolecular network forms a large scale-free network graph. In phase 2, we present a novel clustering algorithm to analyze the biomolecular network graph to identify biologically meaningful subnetworks (communities). The clustering algorithm considers the characteristics of the scale-free network graphs and is based on the local density of the vertex and its neighborhood functions that can be used to find more meaningful clusters with different density level. The experimental results indicate our approach is very effective in extracting biological knowledge from a huge collection of biomedical literature. The integration of data mining and information extraction provides a promising direction for analyzing the biomolecular network  相似文献   

17.
Subnetwork hierarchies of biochemical pathways   总被引:23,自引:0,他引:23  
MOTIVATION: The vastness and complexity of the biochemical networks that have been mapped out by modern genomics calls for decomposition into subnetworks. Such networks can have inherent non-local features that require the global structure to be taken into account in the decomposition procedure. Furthermore, basic questions such as to what extent the network (graph theoretically) can be said to be built by distinct subnetworks are little studied. RESULTS: We present a method to decompose biochemical networks into subnetworks based on the global geometry of the network. This method enables us to analyze the full hierarchical organization of biochemical networks and is applied to 43 organisms from the WIT database. Two types of biochemical networks are considered: metabolic networks and whole-cellular networks (also including for example information processes). Conceptual and quantitative ways of describing the hierarchical ordering are discussed. The general picture of the metabolic networks arising from our study is that of a few core-clusters centred around the most highly connected substances enclosed by other substances in outer shells, and a few other well-defined subnetworks. AVAILABILITY: An implementation of our algorithm and other programs for analyzing the data is available from http://www.tp.umu.se/forskning/networks/meta/ SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.tp.umu.se/forskning/networks/meta/  相似文献   

18.
19.
We address the problem of using expression data and prior biological knowledge to identify differentially expressed pathways or groups of genes. Following an idea of Ideker et al. (2002), we construct a gene interaction network and search for high-scoring subnetworks. We make several improvements in terms of scoring functions and algorithms, resulting in higher speed and accuracy and easier biological interpretation. We also assign significance levels to our results, adjusted for multiple testing. Our methods are successfully applied to three human microarray data sets, related to cancer and the immune system, retrieving several known and potential pathways. The method, denoted by the acronym GXNA (Gene eXpression Network Analysis) is implemented in software that is publicly available and can be used on virtually any microarray data set. SUPPLEMENTARY INFORMATION: The source code and executable for the software, as well as certain supplemental materials, can be downloaded from http://stat.stanford.edu/~serban/gxna.  相似文献   

20.
Gene set analysis aims to identify predefined sets of functionally related genes that are differentially expressed between two conditions. Although gene set analysis has been very successful, by incorporating biological knowledge about the gene sets and enhancing statistical power over gene-by-gene analyses, it does not take into account the correlation (association) structure among the genes. In this work, we present CoGA (Co-expression Graph Analyzer), an R package for the identification of groups of differentially associated genes between two phenotypes. The analysis is based on concepts of Information Theory applied to the spectral distributions of the gene co-expression graphs, such as the spectral entropy to measure the randomness of a graph structure and the Jensen-Shannon divergence to discriminate classes of graphs. The package also includes common measures to compare gene co-expression networks in terms of their structural properties, such as centrality, degree distribution, shortest path length, and clustering coefficient. Besides the structural analyses, CoGA also includes graphical interfaces for visual inspection of the networks, ranking of genes according to their “importance” in the network, and the standard differential expression analysis. We show by both simulation experiments and analyses of real data that the statistical tests performed by CoGA indeed control the rate of false positives and is able to identify differentially co-expressed genes that other methods failed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号