首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 274 毫秒
1.

Aims

This study sought to characterize global and regional right ventricular (RV) myocardial function in patients with Takotsubo cardiomyopathy (TC) using 2D strain imaging.

Methods

We compared various parameters of RV and left ventricular (LV) systolic function between 2 groups of consecutive patients with TC at initial presentation and upon follow-up. Group 1 had RV involvement and group 2 did not have RV involvement.

Results

At initial presentation, RV peak systolic longitudinal strain (RVPSS) and RV fractional area change (RVFAC) were significantly lower in group 1 (−13.2±8.6% vs. −21.8±5.4%, p = 0.001; 30.7±9.3% vs. 43.5±6.3%, p = 0.001) and improved significantly upon follow-up. Tricuspid annular plane systolic excursion (TAPSE) did not differ significantly at initial presentation between both groups (14.8±4.1 mm vs. 17.9±3.5 mm, p = 0.050). Differences in regional systolic RV strain were only observed in the mid and apical segments. LV ejection fraction (LVEF) and LV global strain were significantly lower in group 1 (36±8% vs. 46±10%, p = 0.006 and −5.5±4.8% vs. −10.2±6.2%, p = 0.040) at initial presentation. None of the parameters were significantly different between the 2 groups upon follow-up. A RVPSS cut-off value of >−19.1% had a sensitivity of 85% and a specificity of 71% to discriminate between the 2 groups.

Conclusion

In TC, RVFAC, RVPSS, LVEF and LV global strain differed significantly between patients with and without RV dysfunction, whereas TAPSE did not. 2 D strain imaging was feasible for the assessment of RV dysfunction in TC and could discriminate between patients with and without RV involvement in a clinically meaningful way.  相似文献   

2.

Rationale

Deterioration of ventricular fibrillation (VF) into asystole or severe bradycardia (electrical failure) heralds a fatal outcome of cardiac arrest. The role of metabolism in the timing of electrical failure remains unknown.

Objective

To determine metabolic factors of early electrical failure in an Ex-vivo canine model of cardiac arrest (VF+global ischemia).

Methods and Results

Metabolomic screening was performed in left ventricular biopsies collected before and after 0.3, 2, 5, 10 and 20 min of VF and global ischemia. Electrical activity was monitored via plunge needle electrodes and pseudo-ECG. Four out of nine hearts exhibited electrical failure at 10.1±0.9 min (early-asys), while 5/9 hearts maintained VF for at least 19.7 min (late-asys). As compared to late-asys, early-asys hearts had more ADP, less phosphocreatine, and higher levels of lactate at some time points during VF/ischemia (all comparisons p<0.05). Pre-ischemic samples from late-asys hearts contained ∼25 times more inorganic pyrophosphate (PPi) than early-asys hearts. A mechanistic role of PPi in cardioprotection was then tested by monitoring mitochondrial membrane potential (ΔΨ) during 20 min of simulated-demand ischemia using potentiometric probe TMRM in rabbit adult ventricular myocytes incubated with PPi versus control group. Untreated myocytes experienced significant loss of ΔΨ while in the PPi-treated myocytes ΔΨ was relatively maintained throughout 20 min of simulated-demand ischemia as compared to control (p<0.05).

Conclusions

High tissue level of PPi may prevent ΔΨm loss and electrical failure at the early phase of ischemic stress. The link between the two protective effects may involve decreased rates of mitochondrial ATP hydrolysis and lactate accumulation.  相似文献   

3.

Background

The Purkinje fiber system has recently been implicated as an important driver of the rapid activation rate during long duration ventricular fibrillation (VF>2 minutes). The goal of this study is to determine whether this activity propagates to or occurs in the proximal specialized conduction system during VF as well.

Methods and Results

An 8×8 array with 300 µm spaced electrodes was placed over the His bundles of isolated, perfused rabbit hearts (n = 12). Ventricular myocardial (VM) and His activations were differentiated by calculating Laplacian recordings from unipolar signals. Activation rates of the VM and His bundle were compared and the His bundle conduction velocity was measured during perfused VF followed by 8 minutes of unperfused VF. During perfused VF the average VM activation rate of 11.04 activations/sec was significantly higher than the His bundle activation rate of 6.88 activations/sec (p<0.05). However from 3–8 minutes of unperfused VF the His system activation rate (6.16, 5.53, 5.14, 5.22, 6.00, and 4.62 activations/sec significantly faster than the rate of the VM (4.67, 3.63, 2.94, 2.24, 3.45, and 2.31 activations/sec) (p<0.05). The conduction velocity of the His system immediately decreased to 94% of the sinus rate during perfused VF then gradually decreased to 67% of sinus rhythm conduction at 8 minutes of unperfused VF.

Conclusion

During prolonged VF the activation rate of the His bundle is faster than that of the VM. This suggests that the proximal conduction system, like the distal Purkinje system, may be an important driver during long duration VF and may be a target for interventional therapy.  相似文献   

4.

Background

Altered septal curvature and left ventricular (LV) geometry secondary to right ventricular (RV) dilation render two-dimensional assessment of LV mechanics difficult in repaired tetralogy of Fallot (TOF) patients. The novel three-dimensional (3D) speckle tracking echocardiography enables comprehensive evaluation of true 3D LV mechanics.

Methods and Results

Seventy-six patients aged 23.6±8.3 years, 55 with isolated repair (group I) and 21 with subsequent pulmonary valve replacement (group II), and 34 healthy controls were studied. Three-dimensional volume datasets were acquired for assessment of LV global and regional 3D strain, systolic dyssynchrony index (SDI), twist, twist gradient (twist/LV length), and ejection fraction. A global performance index was calculated as (global 3D strain•twist gradient)/SDI. The septal curvature and LV eccentricity were determined from the mid-ventricular short-axis. Compared with controls, group I and II patients had significantly reduced LV global 3D strain, LV twist, twist gradient, septal curvature, and global performance index, and greater LV systolic and diastolic eccentricity and SDI (all p<0.05). All but the four apical LV segments in patients had reduced regional 3D strain compared with controls (all p<0.05). Septal curvature correlated with LV global 3D strain (r = 0.41, p<0.001), average septal strain (r = 0.38, p<0.001), twist (r = 0.32, p<0.001), twist gradient (r = 0.33, p<0.001), and global performance index (r = 0.43, p<0.001).

Conclusions

Adverse 3D LV mechanics as characterized by impaired global and regional 3D systolic strain, mechanical dyssynchrony, and reduced twist is related to reduced septal curvature in repaired TOF patients with and without pulmonary valve replacement.  相似文献   

5.

Purpose

To investigate the relationship between visual field (VF) damage and history of motor vehicle collisions (MVCs) in subjects with primary open-angle glaucoma (POAG).

Methods

MVC history and driving habits were recorded using patient questionnaires in 247 POAG patients. Patients'' driving attitudes (carefulness) were estimated using Rasch analysis. The relationship between MVC outcomes and 52 total deviation (TD) values of integrated binocular VF (IVF), better and worse visual acuities (VAs), age and gender was analyzed using principal component analysis and logistic regression.

Results

51 patients had the history of MVCs. Significant difference was observed between patients with and without history of MVCs only for: better VA, a single TD value in the superior-right VF, and the typical distance driven in a week (unpaired t-test, p = 0.002, 0.015 and 0.006, respectively). There was not a significant relationship between MVCs and mean deviation (MD) of IVF (p = 0.41, logistic regression). None of the principal components were significantly correlated with MVC outcome (p>0.05, polynomial logistic regression analysis). There was a significant relationship between IVF MD and Rasch derived Person parameter (R2 = 0.023, p = 0.0095). There was also a significant positive relationship between MVCs and the distance driven in a week (p = 0.005, logistic regression).

Conclusions

In this study of POAG patients, MVCs were not related to central binocular VF damage. These results suggest the relationship between visual function and driving is not straightforward, and careful consideration should be given when predicting patients'' driving ability using their VF.  相似文献   

6.

Purpose

To determine whether 3.0-T magnetic resonance imaging (MRI) could assess right ventricular (RV) function in patients with hypertrophic cardiomyopathy (HCM), and if this assessment is correlated with the New York Heart Function Assessment (NYHA) classification.

Materials and Methods

Forty-six patients with HCM and 23 normal individuals were recruited. Left and right ventricular function parameters including end-diastolic and end-systolic volumes (EDV, ESV), stroke volume (SV) and ejection fraction (EF) and dimensions were measured and compared using 3.0-T MRI. RV function parameters between HCM patients and controls were compared using independent sample t tests. A one way ANOVA test with Bonferroni correction was used to determine significant differences among different NYHA groups. Receiver operating characteristic analyses calculated the sensitivity and specificity of RV dysfunction on MRI for the prediction of HCM severity.

Results

Statistical analysis revealed significant differences of left ventricular (LV) and RV volumetric values and masses between the HCM patients and controls (all p<0.05). Within the HCM group, the simultaneously decreased maximum RVEDD correlated well with the LVEDD (r = 0.53; p<0.001). The function and dimension parameters among Class I to III were not determined to be significantly different (all p>0.05). However, significant differences between the Class IV and I-III groups (all P<0.0167) indicated that the diastolic and systolic function in both the RV and LV were impaired in Class IV patients. ROC analyses identified the EDV, ESV and EDD of both the LV and RV with a high sensitivity cutoff value to predict the HCM patients with severe heart failure (Class IV) with high sensitivity and specificity.

Conclusions

RV involvements were comparable to those of LV global function impairments in patients with HCM. The presence of RV dysfunction and decreased dimension on the MRI helped to predict the severe symptomatic HCM with high sensitivity and specificity.  相似文献   

7.

Background

Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice.

Methods

Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII) for 4 wks to induce mild hypertension (n = 9–10 per group). Left ventricular (LV) function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immuno)histochemical analysis to assess effects on hypertrophy, fibrosis and inflammation.

Results

Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01) and cardiomyocyte size (+53% and +31%, p<0.001). This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK), while accumulation of Advanced Glycation End products (AGEs) and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice.

Conclusions

Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.  相似文献   

8.

Background

The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC).

Methodology/Principal Findings

In patients with severe aortic stenosis (AS) undergoing valve replacement, we detected greater myocardial PDE5 expression than in control hearts. We observed robust expression in scattered cardiac myocytes of those AS patients with higher LV filling pressures and BNP serum levels. Following TAC, we detected similar, focal PDE5 expression in cardiac myocytes of C57BL/6NTac mice exhibiting the most pronounced LV remodeling. To examine the effect of cell-specific PDE5 expression, we subjected transgenic mice with cardiac myocyte-specific PDE5 overexpression (PDE5-TG) to TAC. LV hypertrophy and fibrosis were similar as in WT, but PDE5-TG had increased cardiac dimensions, and decreased dP/dtmax and dP/dtmin with prolonged tau (P<0.05 for all). Greater cardiac dysfunction in PDE5-TG was associated with reduced myocardial cGMP and SERCA2 levels, and higher passive force in cardiac myocytes in vitro.

Conclusions/Significance

Myocardial PDE5 expression is increased in the hearts of humans and mice with chronic pressure overload. Increased cardiac myocyte-specific PDE5 expression is a molecular hallmark in hypertrophic hearts with contractile failure, and represents an important therapeutic target.  相似文献   

9.

Background

Cardiac remodelling after AMI is characterized by molecular and cellular mechanisms involving both the ischemic and non-ischemic myocardium. The extent of right ventricular (RV) dilatation and dysfunction and its relation to pulmonary hypertension (PH) following AMI are unknown. The aim of the current study was to evaluate changes in dimensions and function of the RV following acute myocardial infarction (AMI) involving the left ventricle (LV).

Methods

We assessed changes in RV dimensions and function 1 week following experimental AMI involving the LV free wall in 10 mice and assessed for LV and RV dimensions and function and for the presence and degree of PH.

Results

RV fractional area change and tricuspidal annular plane systolic excursion significantly declined by 33% (P = 0.021) and 28% (P = 0.001) respectively. Right ventricular systolic pressure measured invasively in the mouse was within the normal values and unchanged following AMI.

Conclusion

AMI involving the LV and sparing the RV induces a significant acute decline in RV systolic function in the absence of pulmonary hypertension in the mouse indicating that RV dysfunction developed independent of changes in RV afterload.  相似文献   

10.

Background

The mechanisms whereby aerobic training reduces the occurrence of sudden cardiac death in humans are not clear. We test the hypothesis that exercise-induced increased resistance to ventricular tachycardia and fibrillation (VT/VF) involve an intrinsic remodeling in healthy hearts.

Methods and Results

Thirty rats were divided into a sedentary (CTRL, n = 16) and two exercise groups: short- (4 weeks, ST, n = 7) and long-term (8 weeks, LT, n = 7) trained groups. Following the exercise program hearts were isolated and studied in a Langendorff perfusion system. An S1–S2 pacing protocol was applied at the right ventricle to determine inducibility of VT/VF. Fast Fourier transforms were applied on ECG time-series. In-vivo measurements showed training-induced increase in aerobic capacity, heart-to-body weight ratio and a 50% low-to-high frequency ratio reduction in the heart rate variability (p<0.05). In isolated hearts the probability for VF decreased from 26.1±14.4 in CTRL to 13.9±14.1 and 6.7±8.5% in the ST and LT, respectively (p<0.05). Duration of VF also decreased from 19.0±5.7 in CTRL to 8.8±7.1 and 6.0±5.8 sec in ST and LT respectively (p<0.05). Moreover, the pacing current required for VF induction increased following exercise (2.9±1.7 vs. 5.4±2.1 and 8.5±0.9 mA, respectively; p<0.05). Frequency analysis of ECG revealed an exercise-induced VF transition from a narrow single peak spectrum at 17 Hz in CTRL to a broader range of peaks ranging between 8.8 and 22.5 Hz in the LT group (p<0.05).

Conclusion

Exercise in rats leads to reduced VF propensity associated with an intrinsic cardiac remodeling related to a broader spectral range and faster frequency components in the ECG.  相似文献   

11.
12.

Background

Neurosteroids have various physiological and neuropsychopharmacological effects. In addition to the genomic effects of steroids, some neurosteroids modulate several neurotransmitter receptors and channels, such as N-methyl-D-aspartate receptors, γ-aminobutyric acid type A (GABAA) receptors, and σ1 receptors, and voltage-gated Ca2+ and K+ channels. However, the molecular mechanisms underlying the various effects of neurosteroids have not yet been sufficiently clarified. In the nervous system, inwardly rectifying K+ (Kir) channels also play important roles in the control of resting membrane potential, cellular excitability and K+ homeostasis. Among constitutively active Kir2 channels in a major Kir subfamily, Kir2.3 channels are expressed predominantly in the forebrain, a brain area related to cognition, memory, emotion, and neuropsychiatric disorders.

Methodology/Principal Findings

The present study examined the effects of various neurosteroids on Kir2.3 channels using the Xenopus oocyte expression assay. In oocytes injected with Kir2.3 mRNA, only pregnenolone sulfate (PREGS), among nine neurosteroids tested, reversibly potentiated Kir2.3 currents. The potentiation effect was concentration-dependent in the micromolar range, and the current-voltage relationship showed inward rectification. However, the potentiation effect of PREGS was not observed when PREGS was applied intracellularly and was not affected by extracellular pH conditions. Furthermore, although Kir1.1, Kir2.1, Kir2.2, and Kir3 channels were insensitive to PREGS, in oocytes injected with Kir2.1/Kir2.3 or Kir2.2/Kir2.3 mRNA, but not Kir2.1/Kir2.2 mRNA, PREGS potentiated Kir currents. These potentiation properties in the concentration-response relationships were less potent than for Kir2.3 channels, suggesting action of PREGS on Kir2.3-containing Kir2 heteromeric channels.

Conclusions/Significance

The present results suggest that PREGS acts as a positive modulator of Kir2.3 channels. Kir2.3 channel potentiation may provide novel insights into the various effects of PREGS.  相似文献   

13.
Right ventricular (RV) failure is a major cause of mortality in acute or chronic lung disease and left heart failure. The objective of this study was to demonstrate a percutaneous approach to study biventricular hemodynamics in murine models of primary and secondary RV pressure overload (RVPO) and further explore biventricular expression of two key proteins that regulate cardiac remodeling: calcineurin and transforming growth factor beta 1 (TGFβ1).

Methods

Adult, male mice underwent constriction of the pulmonary artery or thoracic aorta as models of primary and secondary RVPO, respectively. Conductance catheterization was performed followed by tissue analysis for changes in myocyte hypertrophy and fibrosis.

Results

Both primary and secondary RVPO decreased biventricular stroke work however RV instantaneous peak pressure (dP/dtmax) and end-systolic elastance (Ees) were preserved in both groups compared to controls. In contrast, left ventricular (LV) dP/dtmax and LV-Ees were unchanged by primary, but reduced in the secondary RVPO group. The ratio of RV:LV ventriculo-arterial coupling was increased in primary and reduced in secondary RVPO. Primary and secondary RVPO increased RV mass, while LV mass decreased in primary and increased in the secondary RVPO groups. RV fibrosis and hypertrophy were increased in both groups, while LV fibrosis and hypertrophy were increased in secondary RVPO only. RV calcineurin expression was increased in both groups, while LV expression increased in secondary RVPO only. Biventricular TGFβ1 expression was increased in both groups.

Conclusion

These data identify distinct effects of primary and secondary RVPO on biventricular structure, function, and expression of key remodeling pathways.  相似文献   

14.

Purpose

To measure progression of the visual field (VF) mean deviation (MD) index in longitudinal 10-2 VFs more accurately, by adding information from 24-2 VFs using Lasso regression.

Methods

A training dataset consisted of 138 eyes from 97 patients with glaucoma or ocular hypertension and a testing dataset consisted of 40 eyes from 34 patients with glaucoma or ocular hypertension. The Lasso method was used to predict total deviation (TD) values in training patients’ 10-2 VFs based on information from their 24-2 VFs (52 TD values, foveal sensitivity and mean deviation MD). Then, the MD of each patient’s 10-2 VF was estimated as the average of these Lasso-predicted TD values (10-2 VF ‘Lasso MD’; LMD). Finally, linear regression was applied to each testing patient’s series of longitudinal 10-2 VF MDs with and without additional Lasso-derived LMDs in order to predict future MDs not included in the regression analysis. Absolute prediction errors were compared when only actual 10-2 MDs were regressed against when a combination of actual 10-2 MDs and LMDs were regressed.

Results

The average absolute prediction error was significantly smaller for the novel method incorporating LMDs (range: 1.6 to 1.8 dB) compared with the standard approach (range: 1.7 to 3.4 dB) (p<0.05, ANOVA test).

Conclusions

Deriving 10-2 VF MD values from 24-2 VFs improves the prediction accuracy of progression. This approach will help clinicians to predict patients’ visual function in the parafoveal area.  相似文献   

15.

Aims

The concealed phase of arrhythmogenic right ventricular cardiomyopathy (ARVC) may initially manifest electrophysiologically. No studies have examined dynamic conduction/repolarization kinetics to distinguish benign right ventricular outflow tract ectopy (RVOT ectopy) from ARVC''s early phase. We investigated dynamic endocardial electrophysiological changes that differentiate early ARVC disease expression from RVOT ectopy.

Methods

22 ARVC (12 definite based upon family history and mutation carrier status, 10 probable) patients without right ventricular structural anomalies underwent high-density non-contact mapping of the right ventricle. These were compared to data from 14 RVOT ectopy and 12 patients with supraventricular tachycardias and normal hearts. Endocardial & surface ECG conduction and repolarization parameters were assessed during a standard S1-S2 restitution protocol.

Results

Definite ARVC without RV structural disease could not be clearly distinguished from RVOT ectopy during sinus rhythm or during steady state pacing. Delay in Activation Times at coupling intervals just above the ventricular effective refractory period (VERP) increased in definite ARVC (43±20 ms) more than RVOT ectopy patients (36±14 ms, p = 0.03) or Normals (25±16 ms, p = 0.008) and a progressive separation of the repolarisation time curves between groups existed. Repolarization time increases in the RVOT were also greatest in ARVC (definite ARVC: 18±20 ms; RVOT ectopy: 5±14, Normal: 1±18, p<0.05). Surface ECG correlates of these intracardiac measurements demonstrated an increase of greater than 48 ms in stimulus to surface ECG J-point pre-ERP versus steady state, with an 88% specificity and 68% sensitivity in distinguishing definite ARVC from the other groups. This technique could not distinguish patients with genetic predisposition to ARVC only (probable ARVC) from controls.

Conclusions

Significant changes in dynamic conduction and repolarization are apparent in early ARVC before detectable RV structural abnormalities, and were present to a lesser degree in probable ARVC patients. Investigation of dynamic electrophysiological parameters may be useful to identify concealed ARVC in patients without disease pedigrees by using endocardial electrogram or paced ECG parameters.  相似文献   

16.

Background

Performance of the left ventricle during exercise stress in thalassaemia patients is uncertain. We aimed to explore the phenomenon of dynamic dyssynchrony and assess contractile reserve in patients with beta-thalassaemia major and determine their relationships with myocardial iron load.

Methods and Results

Thirty-two thalassaemia patients (16 males), aged 26.8±6.9 years, without heart failure and 17 healthy controls were studied. Their left ventricular (LV) volumes, ejection fraction, systolic dyssynchrony index (SDI), and myocardial acceleration during isovolumic LV contraction (IVA) were determined at rest and during submaximal bicycle exercise testing using 3-dimensional and tissue Doppler echocardiography. Myocardial iron load as assessed by T2* cardiac magnetic resonance in patients were further related to indices of LV dyssynchrony and contractile reserve. At rest, patients had significantly greater LV SDI (p<0.001) but similar IVA (p = 0.22) compared with controls. With exercise stress, the prevalence of mechanical dyssynchrony (SDI>4.6%, control+2SD) increased from baseline 25% to 84% in patients. Δ SDIexercise-baseline correlated with exercise-baseline differences in LV ejection fraction (p<0.001) and stroke volume (p = 0.006). Compared with controls, patients had significantly less exercise-induced increase in LV ejection fraction, cardiac index, and IVA (interaction, all p<0.05) and had impaired contractile reserve as reflected by the gentler IVA-heart rate slope (p = 0.018). Cardiac T2* in patients correlated with baseline LV SDI (r = −0.44, p = 0.011) and IVA-heart rate slope (r = 0.36, p = 0.044).

Conclusions

Resting LV dyssynchrony is associated with myocardial iron load. Exercise stress further unveils LV dynamic dyssynchrony and impaired contractile reserve in patients with beta-thalassaemia major.  相似文献   

17.

Background

Myostatin is a negative regulator of skeletal muscle mass whose activity is upregulated in adult heart failure (HF); however, its role in congenital heart disease (CHD) is unknown.

Methods

We studied myostatin and IGF-1 expression via Western blot in cardiac tissue at varying degrees of myocardial dysfunction and after biventricular support in CHD by collecting myocardial biopsies from four patient cohorts: A) adult subjects with no known cardiopulmonary disease (left ventricle, LV), (Adult Normal), (n = 5); B) pediatric subjects undergoing congenital cardiac surgery with normal RV size and function (right ventricular outflow tract, RVOT), (n = 3); C) pediatric subjects with worsening but hemodynamically stable LV failure [LV and right ventricle (LV, RV,)] with biopsy collected at the time of orthotopic heart transplant (OHT), (n = 7); and D) pediatric subjects with decompensated bi-ventricular failure on BiVAD support with biopsy collected at OHT (LV, RV, BiVAD), (n = 3).

Results

The duration of HF was longest in OHT patients compared to BIVAD. The duration of BiVAD support was 4.3±1.9 days. Myostatin expression was significantly increased in LV-OHT compared to RV-OHT and RVOT, and was increased more than double in decompensated biventricular HF (BiVAD) compared to both OHT and RVOT. An increased myostatin/IGF-1 ratio was associated with ventricular dysfunction.

Conclusions

Myostatin expression in increased in CHD, and the myostatin/IGF-1 ratio increases as ventricular function deteriorates. Future investigation is necessary to determine if restoration of the physiologic myostatin/IGF-1 ratio has therapeutic potential in HF.  相似文献   

18.

Objectives

To investigate the association between emphysema heterogeneity in spatial distribution, pulmonary function and disease severity.

Methods and Materials

We ascertained a dataset of anonymized Computed Tomography (CT) examinations acquired on 565 participants in a COPD study. Subjects with chronic bronchitis (CB) and/or bronchodilator response were excluded resulting in 190 cases without COPD and 160 cases with COPD. Low attenuations areas (LAAs) (≤950 Hounsfield Unit (HU)) were identified and quantified at the level of individual lobes. Emphysema heterogeneity was defined in a manner that ranged in value from −100% to 100%. The association between emphysema heterogeneity and pulmonary function measures (e.g., FEV1% predicted, RV/TLC, and DLco% predicted) adjusted for age, sex, and smoking history (pack-years) was assessed using multiple linear regression analysis.

Results

The majority (128/160) of the subjects with COPD had a heterogeneity greater than zero. After adjusting for age, gender, smoking history, and extent of emphysema, heterogeneity in depicted disease in upper lobe dominant cases was positively associated with pulmonary function measures, such as FEV1 Predicted (p<.001) and FEV1/FVC (p<.001), as well as disease severity (p<0.05). We found a negative association between HI% , RV/TLC (p<0.001), and DLco% (albeit not a statistically significant one, p = 0.06) in this group of patients.

Conclusion

Subjects with more homogeneous distribution of emphysema and/or lower lung dominant emphysema tend to have worse pulmonary function.  相似文献   

19.

Background

Prolongation of action potential duration (APD), increased spatial APD dispersion, and triangulation are major factors promoting drug-induced ventricular arrhythmia. Preclinical identification of HERG/IKr-blocking drugs and their pro-arrhythmic potential, however, remains a challenge. We hypothesize that transgenic long-QT type 1 (LQT1) rabbits lacking repolarizing IKs current may help to sensitively detect HERG/IKr-blocking properties of drugs.

Methods

Hearts of adult female transgenic LQT1 and wild type littermate control (LMC) rabbits were Langendorff-perfused with increasing concentrations of HERG/IKr-blockers E-4031 (0.001–0.1 µM, n = 9/7) or erythromycin (1–300 µM, n = 9/7) and APD, APD dispersion, and triangulation were analyzed.

Results

At baseline, APD was longer in LQT1 than in LMC rabbits in LV apex and RV mid. Erythromycin and E-4031 prolonged APD in LQT1 and LMC rabbits in all positions. However, erythromycin-induced percentaged APD prolongation related to baseline (%APD) was more pronounced in LQT1 at LV base-lateral and RV mid positions (100 µM, LQT1, +40.6±9.7% vs. LMC, +24.1±10.0%, p<0.05) and E-4031-induced %APD prolongation was more pronounced in LQT1 at LV base-lateral (0.01 µM, LQT1, +29.6±10.6% vs. LMC, +19.1±3.8%, p<0.05) and LV base-septal positions. Moreover, erythromycin significantly increased spatial APD dispersion only in LQT1 and increased triangulation only in LQT1 in LV base-septal and RV mid positions. Similarly, E-4031 increased triangulation only in LQT1 in LV apex and base-septal positions.

Conclusions

E-4031 and erythromycin prolonged APD and increased triangulation more pronouncedly in LQT1 than in LMC rabbits. Moreover, erythromycin increased APD dispersion only in LQT1, indicating that transgenic LQT1 rabbits could serve as sensitive model to detect HERG/IKr-blocking properties of drugs.  相似文献   

20.

Background

Postnatal overfeeding (OF) in rodents induces a permanent moderate increase in body weight in adulthood. However, the repercussions of postnatal OF on cardiac gene expression, cardiac metabolism and nitro-oxidative stress are less well known.

Methodology/Principal Findings

Immediately after birth, litters of C57BL/6 mice were either maintained at 10 (normal-fed group, NF), or reduced to 3 in order to induce OF. At weaning, mice of both groups received a standard diet. The cardiac gene expression profile was determined at weaning and cardiac metabolism and oxidative stress were assessed at 7 months. The cardiac expression of several genes, including members of the extracellular matrix and apelin pathway, was modified in juvenile OF mice. In adult mice, OF led to an increase in body weight (+30%) and to significant increases in plasma cholesterol, insulin and leptin levels. Myocardial oxidative stress, SOD and catalase activity and mRNA expression were increased in OF mice. In vivo, diastolic and systolic blood pressures were significantly higher and LV shortening and ejection fraction were decreased in OF mice. Ex vivo, after 30 min of ischemia, hearts isolated from OF mice showed lower functional recovery and larger infarct size (31% vs. 54%, p<0.05). Increases in collagen deposition and expression/activity of matrix-metalloproteinase-2 were observed in adult OF mouse hearts. Moreover, an increase in the expression of SOCS-3 and a decrease in STAT-3 phosphorylation were observed in ventricular tissues from OF mice.

Conclusions/Significance

Our study emphasizes that over-nutrition during the immediate postnatal period in mice leads to early changes in cardiac gene expression, which may permanently modify the heart’s structural organization and metabolism and could contribute to a greater susceptibility to myocardial ischemia-reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号