首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pruss, S.B., Clemente, H. & Laflamme, M. 2012: Early (Series 2) Cambrian archaeocyathan reefs of southern Labrador as a locus for skeletal carbonate production. Lethaia, Vol. 45, pp. 401–410. Archaeocyathan reefs, the first reefs produced by animals, are prominent, global features of early Cambrian successions. However, microbialites – the dominant reef components of the Proterozoic – were still abundant in most archaeocyathan reefs. Although such reefs were a locus for carbonate production, it is unclear how much carbonate was produced skeletally. This analysis of well‐known early Cambrian archaeocyathan patch reefs of the Forteau Formation, southern Labrador, demonstrates that skeletal carbonate was abundantly produced in these archaeocyathan reefs, although only about half was produced by archaeocyathans. Trilobites, echinoderms and brachiopods contributed substantially to the total carbonate budget, particularly in grainstone facies flanking the reefs. Through point count analysis of samples collected from the reef core and flanking grainstones, it can be demonstrated that skeletal material was most abundant in grainstone facies, where animals such as trilobites and echinoderms contributed significantly to carbonate production. In contrast, microbial fabrics were more abundant than skeletal fabrics in the reef core, although archaeocyathan material was more abundant than other skeletal debris. Similar to modern reefs, these reefs created a variety of habitats that allowed for the proliferation of skeletal organisms living on and around the reef, thereby promoting skeletal carbonate production through ecosystem engineering. □Archaeocyatha, bioherms, carbonates, calcification, point count analysis  相似文献   

2.
3.
The siphonous green alga Codium fragile occurs in many temperate marine regions and is composed of a number of distinct subspecies. Included in this taxon is the common open coast C. fragile subsp. fragile of the northeast Pacific and the weedy C. fragile subsp. tomentosoides which has invaded temperate marine communities in the Atlantic and Pacific oceans. The center of origin of this weedy subspecies is not known, although it is thought to have dispersed from the northwest Pacific. To examine the relationship of the weedy subspecies to the indigenous northeast Pacific form, chloroplast DNA was compared. Each of these subspecies has a restriction map that is uniform throughout its geographic distribution, and the patterns are distinct from each other and from other Codium species examined. However, the two share an almost identical genome size and arrangement of genes. A population in San Francisco Bay was found to be indistinguishable from the weed C. fragile subsp. tomentosoides from the Atlantic. The potential for using molecular data in solving systematic problems in Codium has been clearly demonstrated.  相似文献   

4.
《Palaeoworld》2022,31(1):14-29
Strata situated within the South China Craton host several key Cambrian macroalgal assemblages, including those of the Chengjiang, Kaili, and Tsinghsutung Lagerstätte. In this report, Cambrian macroalgae are described for the first time from the North China Craton, an area that, during the early Paleozoic, was not contiguous with the South China Craton. The material collected from the Mantou Formation and overlying Zhangxia Formation (Miaolingian Series) in Shandong Province is preserved as carbonaceous compressions and includes abundant simple tubular forms. These fall into two groupings on the basis of size and have characteristics broadly comparable to Fuxianospira gyrata and Sinocylindra yunnanensis, both of which are well-known from the Chengjiang biota and may represent simple siphonous green algae. Additional material includes irregular circular to oval films referable to Morania fragmenta and a tuft-like form superficially similar to Marpolia spissa, taxa with possible cyanophyte affinities described initially on the basis of material from the Burgess Shale but also known from the Cambrian of South China. The material is typical of the “Cambrian Flora” and provides further support for the cosmopolitan distribution of this noncalcified macroalgal flora at low latitude settings during the Cambrian.  相似文献   

5.
The Cambrian Series 3 Zhangxia Formation in Shandong Province, North China, includes small‐scale lithistid sponge–microbial reefs. The lithistid sponges grew on oolitic and bioclastic sediments, which were stabilized by microbial activities. The relative abundances of microbial components (e.g. calcimicrobe Epiphyton and stromatolites) vary among the reefs. However, the microbial components commonly encrusted or bound the lithistid sponges, formed remarkable encrustations on the surfaces of the sponges. Epiphyton especially grew upward and downward. The lithistid sponges thus provided substrates for the attachment and development of microbes, and the microbes played essential roles as consolidators, by encrusting reef‐building sponges. Additionally, the lithistid sponges were prone to degradation via microbial activities and diagenetic processes, and were thus preserved as micritic bodies, showing faint spicular networks or abundant spicules. Such low preservation potential within the reef environment obscured the presence of the sponges and their widespread contribution as reef‐building organisms during the Cambrian. During the prolonged interval after the demise of archaeocyaths, purely microbial reefs, such as stromatolites and thrombolites have been considered to be the principal reef builders, in association with rare lithistid sponge–microbial associations. However, recent findings, including those from Shandong Province and Korea, suggest that the lithistid sponge‐bearing reefs were more extensive during the Epoch 3 to the Furongian than previously thought. These lithistid sponge–microbial reefs were precursors of the sponge–microbial reefs that dominated worldwide in the Early Ordovician.  相似文献   

6.
The rapid origination and diversification of major animal body plans during the early Cambrian coincide with the rise of Earth's first animal-built framework reefs. Given the importance of scleractinian coral reefs as ecological facilitators in modern oceans, we investigate the impact of archaeocyathan (Class Archaeocyatha) reefs as engineered ecosystems during the Cambrian radiation. In this study, we present the first high-resolution, three-dimensional (3D) reconstructions of branching archaeocyathide (Order Archaeocyathida) individuals from three localities on the Laurentian paleocontinent. Because branched forms in sponges and corals display phenotypic plasticity that preserve the characteristics of the surrounding growth environment, we compare morphological measurements from our fossil specimens to those of modern corals to infer the surface conditions of Earth's first reefs. These data demonstrate that archaeocyaths could withstand and influence the flow of water, accommodate photosymbionts, and build topographically complex and stable structures much like corals today. We also recognize a stepwise increase in the roughness of reef environments in the lower Cambrian, which would have laid a foundation for more abundant and diverse coevolving fauna.  相似文献   

7.
Jan M. Anderson 《BBA》1983,724(3):370-380
Eight chlorophyll-protein complexes were isolated from thylakoid membranes of a Codium species, a marine green alga, by mild SDS-polyacrylamide gel electrophoresis. CP 1a1, CP 1a2, CP 1a3 and CP 1a4 were partially dissociated Photosystem (PS) I complexes, which in addition to the core reaction centre complex, CP 1, possessed PS I light-harvesting complexes containing chlorophyll (Chl) a, Chl b and siphonaxanthin. LHCP1 and LHCP3 are orange-brown green chlorophyll ab-proteins (Chl aChl b ratios of 0.66) that contain siphonaxanthin and its esterified form, siphonein. CP a and CP 1, the core reaction centre complexes of PS II and PS I, respectively, had similar spectral properties to those isolated from other algae or higher plants. These P-680- or P-700-Chl a-proteins are universally distributed among algae and terrestrial plants; they appear to be highly conserved and have undergone little evolutionary adaptation. Siphonaxanthin and siphonein which are present in the Codium light-harvesting complexes of PS II and PS I are responsible for enhanced absorption in the green region (518 and 538 nm). Efficient energy transfer from both xanthophylls and Chl b to only Chl a in Codium light-harvesting complexes, which have identical fluorescence emission spectra at 77 K to those of the lutein-Chl ab-proteins (Chl aChl b ratios of 1.2) of most green algae and all higher plants, proved that the molecular arrangement of these light-harvesting pigments was maintained in the isolated Codium complexes. The siphonaxanthin-Chl ab-proteins allow enhanced absorption of blue-green and green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats. Since there is a variable distribution of lutein, siphonaxanthin and siphonein in marine green algae and siphonaxanthin is found in very ancient algae, these novel siphonein-siphonaxanthin-Chl ab-proteins may be ancient light-harvesting complexes which were evolved in deep water algae.  相似文献   

8.
Chloroplasts were isolated from the marine alga Codium vermilara (Siphonales). The isolated chloroplasts were active in CO2 fixation in the light at a rate comparable to the rates obtained by fragments of thalli. Maximal rates of CO2 fixation by isolated chloroplasts from Codium were obtained in the presence of salt or sorbitol isoosmotic with sea water. The conditions of isolation of Codium chloroplasts are much less stringent than those required for active chloroplasts from higher plants. The isolated chloroplasts comprise a homogeneous population of the intact “class I” type, as based on microscopic observations and on their inability to reduce ferricyanide unless osmotically shocked. The intact chloroplasts are able to reduce p-benzoquinone at a high rate.  相似文献   

9.
The marine siphonous green alga, Codium fragile, was shown to contain two 25-methylene sterols. These were identified as (24S)-24-ethylcholesta-5.25-dien-3β-ol and the previously unknown (24S)-24-methylcholesta-5,25-dien-3β-ol for which the trivial name codisterol is proposed.  相似文献   

10.
On the basis of fine-structural features of nuclei the “true” siphonous green algae (Eusiphoniidae) are divided into three groups. In the Codium group nuclei are generally similar to those in most other algae. The Penicillus group is characterized by the association of microbodies with nuclei. In the Avrainvillea group nucleoli are segregated into a granular and a fibrillar component. This condition, known as macrosegregation, persists throughout the vegetative phase of the life history and may indicate a peculiar ribosomal RNA cycle. The Penicillus group corresponds to the order Caulerpales Feldmann. Avrainvillea and Cladocephalus probably constitute a new order. Blastophysa, although having a type of segregated nucleoli, is probably more closely related to Siphonocladales than to any order in Eusiphoniidae.  相似文献   

11.
The introduction of non-native species occurs within a context of other anthropogenic impacts: thus a holistic approach is needed to understand interactive effects. Installation of shoreline protection structures is increasing in response to rising sea levels and increasing frequency of intense storms. Shoreline hardening structures can facilitate establishment of non-native species with multiple potential consequences. We measured abundances of both native and non-native Codium, a green macroalga, on natural hard substrates (oyster reefs) and artificial substrates (bulkheads and revetments) in two estuaries and assessed the effects of each Codium species on nitrogen fixation and net N2 fluxes. Native C. decorticatum was the most abundant (86 %) Codium on oyster reefs, while exotic C. fragile dominated (99 %) artificial substrates. N2 production via denitrification was greater than nitrogen fixation for both species and the net N2 production associated with non-native C. fragile was greater than with native C. decorticatum. Comparing our results with surveys conducted in the 1940s before C. fragile had invaded, indicates that non-native Codium has outcompeted native Codium on artificial substrates, but that natural substrate provided by oyster reefs remains a refuge for native Codium. Although shoreline hardening with artificial structures can reduce ecosystem services provided by coastal marsh and other habitats, an unexpected beneficial consequence was the N2 production associated with the non-native Codium, which has the potential to mitigate anthropogenic nutrient loading. Our results illustrate that the interaction between multiple anthropogenic impacts can be positive, and indicate that non-ephemeral macroalgae could be an overlooked component in nitrogen removal from marine ecosystems by enhancing denitrification.  相似文献   

12.
A multi-locus time-calibrated phylogeny of the siphonous green algae   总被引:2,自引:0,他引:2  
The siphonous green algae are an assemblage of seaweeds that consist of a single giant cell. They comprise two sister orders, the Bryopsidales and Dasycladales. We infer the phylogenetic relationships among the siphonous green algae based on a five-locus data matrix and analyze temporal aspects of their diversification using relaxed molecular clock methods calibrated with the fossil record. The multi-locus approach resolves much of the previous phylogenetic uncertainty, but the radiation of families belonging to the core Halimedineae remains unresolved. In the Bryopsidales, three main clades were inferred, two of which correspond to previously described suborders (Bryopsidineae and Halimedineae) and a third lineage that contains only the limestone-boring genus Ostreobium. Relaxed molecular clock models indicate a Neoproterozoic origin of the siphonous green algae and a Paleozoic diversification of the orders into their families. The inferred node ages are used to resolve conflicting hypotheses about species ages in the tropical marine alga Halimeda.  相似文献   

13.
Cladistic analysis of nuclear-encoded rRNA sequence data provided us with the basis for some new hypotheses of relationships within the green algal class Ulvophyceae. The orders Ulotrichales and Ulvales are separated from the clade formed by the remaining orders of siphonous and siphonocladous Ulvophyceae (Caulerpales, Siphonocladales /Cladophorales [S/C] complex, and the Dasycladales), by the Chlorophyceae and Pleurastrophyceae. Our results suggest that the Ulvophyceae is not a monophyletic group. Examination of inter- and intra-ordinal relationships within the siphonous and siphonocladous ulvophycean algae revealed that Cladophora, Chaetomorpha, Anadyomene, Microdictyon, Cladophoropsis and Dictyosphaeria form a clade. Thus the hypothesis, based on ultrastructural features, that the Siphonocladales and Cladophorales are closely related is supported. Also, the Caulerpales is a monophyletic group with two lineages; Caulerpa, Halimeda, and Udotea comprise one, and Bryopsis and Codium comprise the other. The Dasycladales (Cymopolia and Batophora) also forms a clade, but this clade is not inferred to be the sister group to the S/C complex as has been proposed. Instead, it is either the sister taxon to the Caulerpales or basal to the Caulerpales and S/C clade The Trentepohliales is also included at the base of the siphonous and siphonocladous ulvophycean clade. The Pleurastrophyceae, which, like the Ulvophyceae, posses a counter-clockwise arrangement of flagellar basal bodies, are more closely related to the Chlorophyceae than to the Ulvophyceae based on rRNA sequences. Thus, the arrangement of basal bodies does not diagnose a monophyletic group. Previously reported hypotheses of phylogenetic relationships of ulvophycean algae were tested. In each case, additional evolutionary steps were required to obtain the proposed relationships. Relationships of ulvophycean algae to other classes of green algae are discussed.  相似文献   

14.
Sponges are ancient metazoans that host diverse and complex microbial communities. Sponge-associated microbial diversity has been studied from wide oceans across the globe, particularly in subtidal regions, but the microbial communities from intertidal sponges have remained mostly unexplored. Here we used pyrosequencing to characterize the microbial communities in 12 different co-occurring intertidal marine sponge species sampled from the Atlantic coast, revealing a total of 686 operational taxonomic units (OTUs) at 97% sequence similarity. Taxonomic assignment of 16S ribosomal RNA tag sequences estimated altogether 26 microbial groups, represented by bacterial (75.5%) and archaeal (22%) domains. Proteobacteria (43.4%) and Crenarchaeota (20.6%) were the most dominant microbial groups detected in all the 12 marine sponge species and ambient seawater. The Crenarchaeota microbes detected in three Atlantic Ocean sponges had a close similarity with Crenarchaeota from geographically separated subtidal Red Sea sponges. Our study showed that most of the microbial communities observed in sponges (73%) were also found in the surrounding ambient seawater suggesting possible environmental acquisition and/or horizontal transfer of microbes. Beyond the microbial diversity and community structure assessments (NMDS, ADONIS, ANOSIM), we explored the interactions between the microbial communities coexisting in sponges using the checkerboard score (C-score). Analyses of the microbial association pattern (co-occurrence) among intertidal sympatric sponges revealed the random association of microbes, favoring the hypothesis that the sponge-inhabiting microbes are recruited from the habitat mostly by chance or influenced by environmental factors to benefit the hosts.  相似文献   

15.
项楷  刘威  殷宗军 《古生物学报》2024,63(2):182-193
磷酸盐化保存是软躯体化石特异埋藏的一个重要途径, 而微生物在软躯体磷酸盐化过程中可能发挥了重要作用。前人通过埋藏学实验发现, 微生物会在动物胚胎等软躯体组织内部快速滋生, 充填生物体内部空间, 以微生物假形的方式复制了生物体的原始形态。但化石的磷酸盐化过程是否与埋藏学实验模拟的过程一致, 目前仍有争议。本次研究在寒武纪早期宽川铺生物群中发现了一类网格状微体化石。此类化石的保存状态可以根据其中丝状微生物滋生的程度分为三种类型, 它们展示了生物从死亡到微生物侵入、滋生, 最后被磷酸盐化的全过程。这些标本显示, 微生物假形在生物软组织磷酸盐化过程中扮演了重要角色, 但并不是化石磷酸盐化的必由之路, 尤其是当生物体具有矿化硬骨骼或者几丁质软骨骼等抗腐性较强的结构时。此类标本多以不完整保存的残片为主, 正反两面结构一致, 具有典型列状排列的近圆形与哑铃形网孔。由于化石结构简单, 生物学性状较少, 因此它们的亲缘关系尚不明确, 是一类需要继续研究的疑难化石。  相似文献   

16.
A well-preserved biota of Lower Cambrian cavity-dwelling organisms is recorded within fissures in Neoproterozoic andesites in Ossa-Morena (southern Spain). The cavities are unique among described Lower Cambrian coelobiontic communities due to the igneous character of the host rock. Coelobiontic habitat was episodically enlarged by synsedimentary tectonic fracturing reflecting polyphase infill of recurrent facies. The pioneer coelobiontic biota was diverse, and consisted of encrusting stromatolites and thromboids (dominated by Epiphyton and Renalcis), attached to walls and ceilings of the cavities, associated with archaeocyaths. Sponge spicules and chancelloriid sclerites occur as dense clusters indicating in situ growth, death and decay of spiculate sponges and coeloscleritophorans. Other organisms, such as echinoderms, trilobites and brachiopods, are also found within the cavities as reworked skeletons, indicating that they were washed in from the overlying, open seafloor. The main feature of the coelobiontic biota is the dominance of a sessile, chemosynthetic and filter-feeding epibenthos, composed of microbial communities, archaeocyaths, spiculate sponges (demosponges and rarer hexactinellides) and coeloscleritophorans.  相似文献   

17.
An anticoagulant was isolated from a marine green alga, Codium cylindricum. The anticoagulant was composed mainly of galactose with a small amount of glucose, and was highly sulfated (13.1% as SO Na). The anticoagulant properties of the purified anticoagulant were compared with that of heparin by assays of activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) using normal human plasma. The anticoagulant showed similar activities with heparin, however, weaker than heparin. On the other hand, the anticoagulant did not affect PT even at the concentration at which APTT and TT were strongly prolonged. The anticoagulant did not potentiate antithrombin III (AT III) and heparin cofactor II (HC II), thus the anticoagulant mechanism would be different from that of other anticoagulants isolated so far from the genus Codium.  相似文献   

18.
A pipeline carrying acidic mine effluent at Iron Mountain, CA, developed Fe(III)-rich precipitate caused by oxidation of Fe(II)aq. The native microbial community in the pipe included filamentous microbes. The pipe scale consisted of microbial filaments, and schwertmannite (ferric oxyhydroxysulfate, FOHS) mineral spheres and filaments. FOHS filaments contained central lumina with diameters similar to those of microbial filaments. FOHS filament geometry, the geochemical environment, and the presence of filamentous microbes suggest that FOHS filaments are mineralized microbial filaments. This formation of textural biosignatures provides the basis for a conceptual model for the development and preservation of biosignatures in other environments.  相似文献   

19.
The green algaCodium fragile ssp.tomentosoides (Chlorophyta) has been introduced accidentally and successfully from Japan to many shores of the northern and southern hemispheres, including those of the Northeast and Northwest Atlantic Ocean. On most European coasts,Codium occurs regularly but at low abundances in the intertidal zone and is absent from subtidal habitats. In contrast,Codium is extremely abundant in subtidal kelp beds in the Northwest Atlantic Ocean where it often reaches nuisance proportions. This differential success cannot be accounted for by either the properties of the invader or by physico-chemical differences between invaded coasts. A theoretical comparison between two regions on opposite sides of the Atlantic Ocean, i.e. Eastern Nova Scotia, Canada, and south central Britain, illustrates how the resident benthic community may determine the difference in relative abundance ofCodium in subtidal habitats between northeast America and Europe. In this review, low floral species diversity, biological disturbance and facilitation by a previous species invasion are suggested as potential factors for the establishment, success and abundance ofCodium in the Northwest Atlantic Ocean, but these require testing in field experiments.  相似文献   

20.
We review electrophysiological measures of turgor regulation in some siphonous green algae, primarily the giant-celled marine algae, Valonia and Ventricaria, with particular comparison to the well studied charophyte algae Chara and Lamprothamnium. The siphonous green algae have a less negative plasma membrane potential, and are unlikely to have a proton-based chemiosmotic transport system, dominated by active electrogenic K+ uptake. We also make note of the unusual cellular structure of the siphonous green algae. Hypertonic stress, due to increased external osmotic pressure, is accompanied by positive-going potential difference (PD), increase in conductance, and slow turgor regulation. The relationship between these is not yet resolved, but may involve changes in K+ conductance (G K) or active K+ transport at both membranes. Hypotonic turgor regulation, in response to decreased external osmotic pressure, is ∼3 times faster than hypertonic turgor regulation. It is accompanied by a negative-going PD, although conductance also increases. The conductance increase and the magnitude of the PD change are strongly correlated with the magnitude of hypotonic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号