首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients.  相似文献   

2.
Brain cancer is a devastating disease affecting many people worldwide. Effective treatment with chemotherapeutics is limited due to the presence of the blood-brain barrier (BBB) that tightly regulates the diffusion of endogenous molecules but also xenobiotics. Glutathione pegylated liposomal doxorubicin (2B3-101) is being developed as a new treatment option for patients with brain cancer. It is based on already marketed pegylated liposomal doxorubicin (Doxil®/Caelyx®), with an additional glutathione coating that safely enhances drug delivery across the BBB.Uptake of 2B3-101 by human brain capillary endothelial cells in vitro was time-, concentration- and temperature-dependent, while pegylated liposomal doxorubicin mainly remained bound to the cells. In vivo, 2B3-101 and pegylated liposomal doxorubicin had a comparable plasma exposure in mice, yet brain retention 4 days after administration was higher for 2B3-101. 2B3-101 was overall well tolerated by athymic FVB mice with experimental human glioblastoma (luciferase transfected U87MG). In 2 independent experiments a strong inhibition of brain tumor growth was observed for 2B3-101 as measured by bioluminescence intensity. The effect of weekly administration of 5 mg/kg 2B3-101 was more pronounced compared to pegylated liposomal doxorubicin (p<0.05) and saline (p<0.01). Two out of 9 animals receiving 2B3-101 showed a complete tumor regression. Twice-weekly injections of 5 mg/kg 2B3-101 again had a significant effect in inhibiting brain tumor growth (p<0.001) compared to pegylated liposomal doxorubicin and saline, and a complete regression was observed in 1 animal treated with 2B3-101. In addition, twice-weekly dosing of 2B3-101 significantly increased the median survival time by 38.5% (p<0.001) and 16.1% (p<0.05) compared to saline and pegylated liposomal doxorubicin, respectively.Overall, these data demonstrate that glutathione pegylated liposomal doxorubicin enhances the effective delivery of doxorubicin to brain tumors and could become a promising new therapeutic option for the treatment of brain malignancies.  相似文献   

3.
A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and in vitro cell line. MDA-MB-231 tumor cells were implanted in animals’ right flank and randomly assigned to early (1 and 2), starting treatments on day 0, or delayed groups (3 and 4) on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg) treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05). Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found in vitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05) compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day’s data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days.  相似文献   

4.

Background

Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB), significantly limiting drug use in brain cancer treatment.

Methodology/Principal Findings

We examined the effect of phosphodiesterase 5 (PDE5) inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [14C]dextran and trastuzumab (Herceptin®, a humanized monoclonal antibody against HER2/neu) by cultured mouse brain endothelial cells (MBEC). The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [14C]dextran (2.6-fold increase) and to Herceptin (2-fold increase). Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p<0.01). Log-rank survival analysis of mice bearing HER2-positive intracranial breast tumor also showed a significant survival increase (p<0.02) in the group treated with Herceptin plus vardenafil as compared to other groups. However, vardenafil did not exert any beneficial effect on survival of mice bearing intracranial breast tumor with low HER2 expression and co-treated with Herceptin (p>0.05).

Conclusions/Significance

These findings suggest that PDE5 inhibitors may effectively modulate BTB permeability, and enhance delivery and therapeutic efficacy of monoclonal antibodies in hard-to-treat brain metastases from different primary tumors that had metastasized to the brain.  相似文献   

5.
Breast cancer is a complex disease, with heterogeneous clinical evolution. Several analyses have been performed to identify the risk factors for breast cancer progression and the patients who respond best to a specific treatment. We aimed to evaluate whether the hormone receptor expression, HER2 and MYC genes and their protein status, and KRAS codon 12 mutations may be prognostic or predictive biomarkers of breast cancer. Protein, gene and mutation status were concomitantly evaluated in 116 breast tumors from women who underwent neoadjuvant chemotherapy with doxorubicin plus cyclophosphamide. We observed that MYC expression was associated with luminal B and HER2 overexpression phenotypes compared to luminal A (p<0.05). The presence of MYC duplication or polysomy 8, as well as KRAS mutation, were also associated with the HER2 overexpression subtype (p<0.05). MYC expression and MYC gain were more frequently observed in early-onset compared to late-onset tumors (p<0.05). KRAS mutation was a risk factor of grade 3 tumors (p<0.05). A multivariate logistic regression demonstrated that MYC amplification defined as MYC/nucleus ratio of ≥2.5 was a protective factor for chemotherapy resistance. On the other hand, age and grade 2 tumors were a risk factor. Additionally, luminal B, HER2 overexpression, and triple-negative tumors presented increased odds of being resistant to chemotherapy relative to luminal A tumors. Thus, breast tumors with KRAS codon 12 mutations seem to present a worse prognosis. Additionally, MYC amplification may help in the identification of tumors that are sensitive to doxorubicin plus cyclophosphamide treatment. If confirmed in a large set of samples, these markers may be useful for clinical stratification and prognosis.  相似文献   

6.
Angiogenesis, which plays an important role in tumor growth and progression of breast cancer, is regulated by a balance between pro- and anti-angiogenic factors. Expression of vascular endothelial growth factor (VEGF) is up-regulated during hypoxia by hypoxia-inducible factor-1α (HIF-1α). It is known that there is an interaction between HIF-1α and BRCA1 carrier cancers, but little has been reported about angiogenesis in BRCA1-2 carrier and BRCAX breast cancers. In this study, we investigated the expression of VEGF and HIF-1α and microvessel density (MVD) in 26 BRCA1-2 carriers and 58 BRCAX compared to 77 sporadic breast cancers, by immunohistochemistry. VEGF expression in BRCA1-2 carriers was higher than in BRCAX cancer tissues (p = 0.0001). Furthermore, VEGF expression was higher in both BRCA1-2 carriers and BRCAX than the sporadic group (p<0.0001). VEGF immunoreactivity was correlated with poor tumor grade (p = 0.0074), hormone receptors negativity (p = 0.0206, p = 0.0002 respectively), and MIB-1-labeling index (p = 0.0044) in familial cancers (BRCA1-2 and BRCAX). The percentage of nuclear HIF-1α expression was higher in the BRCA1-2 carriers than in BRCAX cancers (p<0.05), and in all familial than in sporadic tumor tissues (p = 0.0045). A higher MVD was observed in BRCA1-2 carrier than in BRCAX and sporadic cancer tissues (p = 0.002, p = 0.0001 respectively), and in all familial tumors than in sporadic tumors (p = 0.01). MVD was positively related to HIF-1α expression in BRCA1-2 carriers (r = 0.521, p = 0.006), and, in particular, we observed a highly significant correlation in the familial group (r = 0.421, p<0.0001). Our findings suggest that angiogenesis plays a crucial role in BRCA1-2 carrier breast cancers. Prospective studies in larger BRCA1-2 carrier series are needed to improve the best therapeutic strategies for this subgroup of breast cancer patients.  相似文献   

7.
Leflunomide (Lef) is an agent used in autoimmune disorders that interferes with DNA synthesis. De Novo pyrimidine synthesis is a mechanism of Gemcitabine (Gem) resistance in pancreatic cancer. This study aims to assess the efficacy and changes in the tumor microenvironment of Lef monotherapy and in combination with Gem, in a syngeneic mouse model of pancreatic cancer.Methods: MTS proliferation assays were conducted to assess growth inhibition by Gem (0-20 nM), Lef (0-40 uM) and Gem+Lef in KPC (KrasLSL.G12D/+;p53R172H/+; PdxCretg/+) cells in vitro. An in vivo heterotopic KPC model was used and cohorts were treated with: PBS (control), Gem (75 mg/kg/q3d), Lef (40 mg/kg/d), or Gem+Lef. At d28 post-treatment, tumor burden, proliferation index (Ki67), and vascularity (CD31) were measured. Changes in the frequency of peripheral and intratumoral immune cell subsets were evaluated via FACS. Liquid chromatography-mass spectrometry was used for metabolomics profiling.Results: Lef inhibits KPC cell growth and synergizes with Gem in vitro (P<0.05; Combination Index 0.44 (<1 indicates synergy). In vivo, Lef alone and in combination with Gem delays KPC tumor progression (P<0.001). CTLA-4+T cells are also significantly decreased in tumors treated with Lef, Gem or in combination (Gem+Lef) compared to controls (P<0.05). Combination therapy also decreased the Ki67 and vascularity (P<0.01). Leflunomide inhibits de novo pyrimidine synthesis both in vitro (p<0.0001) and in vivo (p<0.05).Conclusions: In this study, we demonstrated that Gem+Lef inhibits pancreatic cancer growth, decrease T cell exhaustion, vascularity and as proof of principle inhibits de novo pyrimidine synthesis. Further characterization of changes in adaptive immunity are necessary to characterize the mechanism of tumor growth inhibition and facilitate translation to a clinical trial.  相似文献   

8.
Although the CD90 (Thy-1) was proposed as biomarker of several tumors and cancer stem cells, the involvement of this molecule in the progression of hepatocellular carcinoma (HCC) and other less frequent hepatic neoplasms is still undefined. The distribution of CD90 was investigated both in in vivo (human tissues samples) and in vitro (human HCC cell line JHH-6). A total of 67 liver tumors were analyzed: 51 HCC, 6 cholangiocarcinoma and 10 hepatoblastoma. In all cases, paired tissue sample of both the tumor and cirrhotic liver was available. Hepatic tissue obtained in 12 healthy livers was used as control. CD90 gene expression was studied by RT-qPCR, protein expression was assessed by quantitative Western Blot, immunofluorescence and flow cytometry. The CD90 expression analysis showed a significant increment in tumor compared to both its paired cirrhotic tissue and normal liver (p<0.05 and p<0.001, respectively). This increase was accompanied by the up-regulation of stromal component in the cancer, as demonstrated by alpha smooth muscle actin staining. In vitro analysis of JHH-6 cell line showed a higher proliferation capacity of CD90+ compared to CD90- cells (p<0.001), also noticed in 3D clonogenic assay (p<0.05), associated by a significant higher expression of the promoting factors (hepatocyte growth factor, fibroblast associated protein and alpha smooth muscle actin 2). A higher expression of the breast cancer resistance protein was found in CD90+ subpopulation while the multidrug resistance protein 1 showed an opposite behavior. Collectively, these results point to the importance of CD90 in the HCC.  相似文献   

9.
Stem cell therapy for degenerative diseases has been established; however there are controversies over the treatment of solid tumors with stem cell transplantation. In the present study, the anti-tumor action of mesenchymal stem cells (MSCs) has been examined in a mouse model of breast cancer with emphasize on tumor growth, angiogenesis and c-Myc expression in breast tumors. For this purpose, MSCs were isolated from bone marrow of Balb/c mice and characterized. A Balb/c mouse model of breast cancer was developed and subjected to cell therapy intra venous (I.V) or intra tumor (I.T) with MSCs. Tumor growth was measured using a digital caliber for until the end of experiment (30 days). Then the mice were sacrificed and their tumors were removed and processed for histopathological examination, immunohistochemical assay of CD31 and measuring of c-Myc expression using quantitative PCR. Detection of the labeled-MSCs in tumors following injection of the cells (I.V or I.T) clearly showed the homing of MSCs into tumors. Tumor growth in case of MSC-treated mice by I.V and I.T routes was inhibited by approximately 28% and 34% respectively compared to controls. The suppression of angiogenesis was reflected in Micro Vessel Density (MVD) following I.V or I.T delivery of the MSCs. c-Myc gene expression in tumor tissues of mice treated I.V or IT with MSCs was down-regulated to 28.0% and 16.0% respectively compare to control groups. In conclusion, growth inhibition of breast tumors in mice due to MSC therapy is associated with modulation of c-Myc activation and angiogenesis markers.  相似文献   

10.
11.
12.
Cancer stem cells (CSCs) have been associated with metastasis and therapeutic resistance and can be generated via epithelial mesenchymal transition (EMT). Some studies suggest that the hormone melatonin acts in CSCs and may participate in the inhibition of the EMT. The objectives of this study were to evaluate the formation of mammospheres from the canine and human breast cancer cell lines, CMT-U229 and MCF-7, and the effects of melatonin treatment on the modulation of stem cell and EMT molecular markers: OCT4, E-cadherin, N-cadherin and vimentin, as well as on cell viability and invasiveness of the cells from mammospheres. The CMT-U229 and MCF-7 cell lines were subjected to three-dimensional culture in special medium for stem cells. The phenotype of mammospheres was first evaluated by flow cytometry (CD44+/CD24low/- marking). Cell viability was measured by MTT colorimetric assay and the expression of the proteins OCT4, E-cadherin, N-cadherin and vimentin was evaluated by immunofluorescence and quantified by optical densitometry. The analysis of cell migration and invasion was performed in Boyden Chamber. Flow cytometry proved the stem cell phenotype with CD44+/CD24low/- positive marking for both cell lines. Cell viability of CMT-U229 and MCF-7 cells was reduced after treatment with 1mM melatonin for 24 h (P<0.05). Immunofluorescence staining showed increased E-cadherin expression (P<0.05) and decreased expression of OCT4, N-cadherin and vimentin (P<0.05) in both cell lines after treatment with 1 mM melatonin for 24 hours. Moreover, treatment with melatonin was able to reduce cell migration and invasion in both cell lines when compared to control group (P<0.05). Our results demonstrate that melatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs, suggesting its potential anti-metastatic role in canine and human breast cancer cell lines.  相似文献   

13.
Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT.  相似文献   

14.

Purpose

To assess whether T1 relaxation time of tumors may be used to assess response to bevacizumab anti-angiogenic therapy. Procedures: 12 female nude mice bearing subcutaneous SKOV3ip1-LC ovarian tumors were administered bevacizumab (6.25ug/g, n=6) or PBS (control, n=6) therapy twice a week for two weeks. T1 maps of tumors were generated before, two days, and 2 weeks after initiating therapy. Tumor weight was assessed by MR and at necropsy. Histology for microvessel density, proliferation, and apoptosis was performed.

Results

Bevacizumab treatment resulted in tumor growth inhibition (p<0.04, n=6), confirming therapeutic efficacy. Tumor T1 relaxation times increased in bevacizumab treated mice 2 days and 2 weeks after initiating therapy (p<.05, n=6). Microvessel density decreased 59% and cell proliferation (Ki67+) decreased 50% in the bevacizumab treatment group (p<.001, n=6), but not apoptosis.

Conclusions

Findings suggest that increased tumor T1 relaxation time is associated with response to bevacizumab therapy in ovarian cancer model and might serve as an early indicator of response.  相似文献   

15.
Recent evidence demonstrated that endothelial cells initiate signaling events that enhance tumor cell survival, proliferation, invasion, and tumor recurrence. Under this new paradigm for cellular crosstalk within the tumor microenvironment, the origin of endothelial cells and tumor cells may have a direct impact on the pathobiology of cancer. The purpose of this pilot study was to evaluate the effect of endothelial cell species (i.e. murine or human) on xenograft tumor growth and response to therapy. Tumor xenografts vascularized either with human or with murine microvascular endothelial cells were engineered, side-by-side, subcutaneously in the dorsum of immunodefficient mice. When tumors reached 200 mm3, mice were treated for 30 days with either 4 mg/kg cisplatin (i.p.) every 5 days or with 40 mg/kg sunitinib (p.o.) daily. Xenograft human tumors vascularized with human endothelial cells grow faster than xenograft tumors vascularized with mouse endothelial cells (P<0.05). Notably, human tumors vascularized with human endothelial cells exhibited nuclear translocation of p65 (indicative of high NF-kB activity), and were more resistant to treatment with cisplatin or sunitinib than the contralateral tumors vascularized with murine endothelial cells (P<0.05). Collectively, these studies suggest that the species of endothelial cells has a direct impact on xenograft tumor growth and response to treatment with the chemotherapeutic drug cisplatin or with the anti-angiogenic drug sunitinib.  相似文献   

16.

Purpose

Breast cancer remains a major cause of death in women worldwide, and tumor metastasis is the leading cause of death in breast cancer patients after conventional treatment. Chronic inflammation is often related to the occurrence and growth of various malignancies. This study evaluated the prognosis of breast cancer patients based on contributors to the innate immune response: myeloid differentiation primary response 88 (MyD88) and Toll-like receptor 4 (TLR4).

Methods

We analyzed data from 205 breast invasive ductal carcinoma (IDC) patients who were treated at the Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, from 2002 to 2006. Overall survival (OS) and disease-free survival (DFS) were compared.

Results

In total, 152 patients (74.15%) were disease-free without relapse or metastasis, whereas 53 (25.85%) patients developed recurrence or metastasis. A significant positive correlation was observed between MyD88 and TLR4 expression (p<0.001). Patients with high expression were more likely to experience death and recurrence/metastasis events (p<0.05). Patients with low MyD88 or TLR4 expression levels had better DFS and OS than patients with high expression levels (log-rank test: p<0.001). Patients with low MyD88 and TLR4 expression levels had better DFS and OS than patients with high expression levels of either (log-rank test: p<0.001). In a multivariate analysis, high MyD88 expression was an independent predictive factor for decreased DFS (adjusted HR, 3.324; 95% CI, 1.663–6.641; p = 0.001) and OS (adjusted HR, 4.500; 95% CI, 1.546–13.098; p = 0.006).

Conclusions

TLR4-MyD88 signaling pathway activation or MyD88 activation alone may be a risk factor for poor prognosis in breast cancer. Therefore, TLR4-MyD88 signaling pathway activation in tumor biology provides a novel potential target for breast cancer therapy.  相似文献   

17.
Reduced levels of melatonin have been associated with severe depression. The aim was to investigate the correlation between salivary melatonin and dimensional measures of depressive symptom severity in young adult psychiatric patients. Levels of melatonin were analyzed in six saliva samples during waking hours from 119 young adult patients under outpatient psychiatric care. Melatonin levels were tested for association with the severity of depressive symptoms using the self-rating version of the Montgomery Åsberg Depression Rating Scale (MADRS-S). Where possible, depressive symptoms were assessed again after 6±2 months of treatment. Response was defined as decrease in MADRS-S by ≥50% between baseline and follow-up. Patients with levels of melatonin in the lowest quartile at bedtime had an increased probability of a high MADRS-S score compared to those with the highest levels of melatonin (odds ratio 1.39, 95% CI 1.15–1.69, p<0.01). A post hoc regression analysis found that bedtime melatonin levels predicted response (odds ratio 4.4, 95% CI 1.06–18.43, p<0.05). A negative relationship between salivary melatonin and dimensional measures of depressive symptom severity was found in young patients under outpatient psychiatric care. Bedtime salivary melatonin levels may have prognostic implications.  相似文献   

18.

Aim

Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light.

Method

After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week (“two split” NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week (“three split” NIR-PIT).

Result

Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro. Tumor accumulation of cet-IR700 in MDAMB468 tumors was significantly higher (p < 0.05) than in MDAMB231 tumors in vivo. Tumor growth and survival of MDAMB231 tumor bearing mice was significantly lower in the NIR-PIT treatment group (p < 0.05). In MDAMB468 bearing mice, tumor growth and survival was significantly improved in the NIR-PIT treatment groups in all treatment regimens (one shot NIR-PIT; p < 0.05, “two split” NIR-PIT; p < 0.01, “three split” NIR-PIT; p < 0.001) compared with control groups.

Conclusion

NIR-PIT for TNBC was effective regardless of expression of EGFR, however, greater cell killing was shown with higher EGFR expression tumor in vitro. In all treatment regimens, NIR-PIT suppressed tumor growth, resulting in significantly prolonged survival that further improved by splitting the APC dose and using repeated light exposures.  相似文献   

19.
Tumor necrosis factor-alpha (TNF) binds to two receptors: TNFR1/p55-cytotoxic and TNFR2/p75-pro-survival. We have shown that tumor growth in p75 knockout (KO) mice was decreased more than 2-fold in Lewis lung carcinoma (LLCs). We hypothesized that selective blocking of TNFR2/p75 LLCs may sensitize them to TNF-induced apoptosis and affect the tumor growth. We implanted intact and p75 knockdown (KD)-LLCs (>90%, using shRNA) into wild type (WT) mice flanks. On day 8 post-inoculation, recombinant murine (rm) TNF-α (12.5 ng/gr of body weight) or saline was injected twice daily for 6 days. Tumor volumes (tV) were measured daily and tumor weights (tW) on day 15, when study was terminated due to large tumors in LLC+TNF group. Tubular bones, spleens and peripheral blood (PB) were examined to determine possible TNF toxicity. There was no significant difference in tV or tW between LLC minus (-) TNF and p75KD/LLC-TNF tumors. Compared to 3 control groups, p75KD/LLC+TNF showed >2-5-fold decreases in tV (p<0.001) and tW (p<0.0001). There was no difference in tV or tW end of study vs. before injections in p75KD/LLC+TNF group. In 3 other groups tV and tW were increased 2.7-4.5-fold (p<0.01, p<0.0002 and p<0.0001). Pathological examination revealed that 1/3 of p75KD/LLC+rmTNF tumors were 100% necrotic, the remaining revealed 40-60% necrosis. No toxicity was detected in bone marrow, spleen and peripheral blood. We concluded that blocking TNFR2/p75 in LLCs combined with intra-tumoral rmTNF injections inhibit LLC tumor growth. This could represent a novel and effective therapy against lung neoplasms and a new paradigm in cancer therapeutics.  相似文献   

20.

Objective

Many studies have shown that magnetic fields (MF) inhibit tumor growth and influence the function of immune system. However, the effect of MF on mechanism of immunological function in tumor-bearing mice is still unclear.

Methods

In this study, tumor-bearing mice were prepared by subcutaneously inoculating Balb/c mice with hepatocarcinoma cell line H22. The mice were then exposed to a low frequency MF (0.4 T, 7.5 Hz) for 30 days. Survival rate, tumor growth and the innate and adaptive immune parameters were measured.

Results

MF treatment could prolong survival time (n = 28, p<0.05) and inhibit tumor growth (n = 9, p<0.01) in tumor-bearing mice. Moreover, this MF suppressed tumor-induced production of cytokines including interleukin-6 (IL-6), granulocyte colony- stimulating factor (G-CSF) and keratinocyte-derived chemokine (KC) (n = 9–10, p<0.05 or 0.01). Furthermore, MF exposure was associated with activation of macrophages and dendritic cells, enhanced profiles of CD4+ T and CD8+ T lymphocytes, the balance of Th17/Treg and reduced inhibitory function of Treg cells (n = 9–10, p<0.05 or 0.01) in the mice model.

Conclusion

The inhibitory effect of MF on tumor growth was related to the improvement of immune function in the tumor-bearing mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号