首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Fluctuating oxygen levels characterize the microenvironment of many cancers and tumor hypoxia is associated with increased invasion and metastatic potential concomitant with a poor prognosis. Similarly, the expression of lysyl oxidase (LOX) in breast cancer facilitates tumor cell migration and is associated with estrogen receptor negative status and reduced patient survival. Here we demonstrate that hypoxia/reoxygenation drives poorly invasive breast cancer cells toward a more aggressive phenotype by up-regulating LOX expression and catalytic activity. Specifically, hypoxia markedly increased LOX protein expression; however, catalytic activity (beta-aminopropionitrile inhibitable hydrogen peroxide production) was significantly reduced under hypoxic conditions. Moreover, poorly invasive breast cancer cells displayed a marked increase in LOX-dependent FAK/Src activation and cell migration following hypoxia/reoxygenation, but not in response to hypoxia alone. Furthermore, LOX expression is only partially dependent on hypoxia inducible factor-1 (HIF-1alpha) in poorly invasive breast cancer cells, as hypoxia mimetics and overexpression of HIF-1alpha could not up-regulate LOX expression to the levels observed under hypoxia. Clinically, LOX expression positively correlates with tumor progression and co-localization with hypoxic regions (defined by HIF-1alpha expression) in ductal carcinoma in situ and invasive ductal carcinoma primary tumors. However, positive correlation is lost in metastatic tumors, suggesting that LOX expression is independent of a hypoxic environment at later stages of tumor progression. This work demonstrates that both hypoxia and reoxygenation are necessary for LOX catalytic activity which facilitates breast cancer cell migration through a hydrogen peroxide-mediated mechanism; thereby illuminating a potentially novel mechanism by which poorly invasive cancer cells can obtain metastatic competency.  相似文献   

4.
5.
Tibetan chicks (Gallus gallus) survived with high hatchability (35.0%) and Recessive White Feather broilers (RWF) from low elevations survived rarely and with a low hatchability (3.0%) after simulated incubation under hypoxia of 13% O2. The functional mutation of Met-32D(B13)-Leu of alpha(D) globin chain was related with hypoxia based on allele distribution, homology model building and oxygen affinity assay. Whole embryos on days 3-8 and whole blood on days 9-18 were collected to investigate the stage expression profiles of all seven globins and HIF-1alpha by real-time PCR. Under hypoxia (12.0% O2) on days 3-8, HbE was overexpressed, HbA was expressed earlier and HbP expression was restricted, which completely overturned the expression profile under normoxia. The amount of hemoglobin expression in Tibetan chicks was remarkably higher than that of RWF. HIF-1alpha expression peaked early in both breeds, with. In conclusion, the special hypoxic expression profile on days 3-8 certainly is a common molecular mechanism of hypoxia tolerance in surviving Tibetan chick and RWF embryos; the mutation Met-32D(B13)-Leu and increasing hemoglobins are important mechanisms of hypoxia adaptation in Tibetan chick embryos, and we suggest that HIF-1alpha could be responsible for the hypoxic expression profile.  相似文献   

6.
ABSTRACT: BACKGROUND: Mounting clinical and experimental data suggest that the migration of tumor cells into lymph nodes is greatly facilitated by lymphangiogenesis. Vascular endothelial growth factor (VEGF)-C and D have been identified as lymphangiogenic growth factors and play an important role in tumor lymphangiogenesis. The purpose of this study was to investigate the location of lymphangiogenesis driven by tumor-derived VEGF-C/D in breast cancer, and to determine the role of intratumoral and peritumoral lymphatic vessel density (LVD) in lymphangiogenesis in breast cancer. METHODS: The expression levels of VEGF-C/D were determined by immunohistochemistry, and intratumoral LVD and peritumoral LVD were assessed using immunohistochemistry and the D2-40 antibody in 73 patients with primary breast cancer. The associations of intratumoral LVD and peritumoral LVD with VEGF-C/D expression, clinicopathological features and prognosis were assessed. RESULTS: VEGF-C and D expression were significantly higher in breast cancer than benign disease (P < 0.01). VEGF-C (P < 0.001) and VEGF-D (P = 0.005) expression were significantly associated with peritumoral LVD, but not intratumoral LVD. Intratumoral LVD was associated with tumor size (P = 0.01). Peritumoral LVD was significantly associated with lymph node metastasis (LNM; P = 0.005), lymphatic vessel invasion (LVI; P = 0.017) and late tumor,node,metastasis(TNM) stage (P = 0.011). Moreover, peritumoral LVD was an independent risk factor for axillary lymph node metastasis, overall survival and disease-free survival in multivariate analysis. CONCLUSIONS: This study suggests that tumor-derived VEGF-C/D induce peritumoral lymphangiogenesis, which may be one mechanism that leads to lymphatic invasion and metastatic spread. Peritumoral LVD has potential as an independent prognostic factor in breast cancer patients.  相似文献   

7.
8.
Chronic hypoxia and inflammatory cytokines are hallmarks of inflammatory joint diseases like rheumatoid arthritis (RA), suggesting a link between this microenvironment and central pathological events. Because TACE/ADAM17 is the predominant protease catalyzing the release of tumor necrosis factor alpha (TNFalpha), a cytokine that triggers a cascade of events leading to RA, we examined the regulation of this metalloprotease in response to hypoxia and TNFalpha itself. We report that low oxygen concentrations and TNFalpha enhance TACE mRNA levels in synovial cells through direct binding of hypoxia-inducible factor-1 (HIF-1) to the 5' promoter region. This is associated with elevated TACE activity as shown by the increase in TNFalpha shedding rate. By the use of HIF-1-deficient cells and by obliterating NF-kappaB activation, it was determined that the hypoxic TACE response is mediated by HIF-1 signaling, whereas the regulation by TNFalpha also requires NF-kappaB activation. As a support for the in vivo relevance of the HIF-1 axis for TACE regulation, immunohistological analysis of TACE and HIF-1 expression in RA synovium indicates that TACE is up-regulated in both fibroblast- and macrophage-like synovial cells where it localizes with elevated expression of both HIF-1 and TNFalpha. These findings suggest a mechanism by which TACE is increased in RA-affected joints. They also provide novel mechanistic clues on the influence of the hypoxic and inflammatory microenvironment on joint diseases.  相似文献   

9.
Tissue hypoxia/ischemia are major pathophysiological determinants. Conditions of decreased oxygen availability provoke accumulation and activation of hypoxia-inducible factor-1 (HIF-1). Recent reports demonstrate a crucial role of HIF-1 for inflammatory events. Regulation of hypoxic responses by the inflammatory mediators nitric oxide (NO) and reactive oxygen species (ROS) is believed to be of pathophysiolgical relevance. It is reported that hypoxic stabilization of HIF-1alpha can be antagonized by NO due to its ability to attenuate mitochondrial electron transport. Likely, the formation of ROS could contribute to this effect. As conflicting results emerged from several studies showing either decreased or increased ROS production during hypoxia, we used experiments mimicking hypoxic intracellular ROS changes by using the redox cycling agent 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), which generates superoxide inside cells. Treatment of A549, HEK293, HepG2, and COS cells with DMNQ resulted in a concentration-dependent raise in ROS which correlated with HIF-1alpha accumulation. By using a HIF-1alpha-von Hippel-Lindau tumor suppressor protein binding assay, we show that ROS produced by DMNQ impaired prolyl hydroxylase activity. When HIF-1alpha is stabilized by NO, low concentrations of DMNQ (<1 microM) revealed no effect, intermediate concentrations of 1 to 40 microM DMNQ attenuated HIF-1alpha accumulation and higher concentrations of DMNQ promoted HIF-1alpha stability. Attenuation of NO-induced HIF-1alpha stability regulation by ROS was mediated by an active proteasomal degradation pathway. In conclusion, we propose that scavenging of NO by ROS and vice versa attenuate HIF-1alpha accumulation in a concentration-dependent manner. This is important to fully elucidate HIF-1alpha regulation under inflammatory conditions.  相似文献   

10.
According to recent data erythropoietin receptor (EPOR) is expressed not only by bone marrow erythroid progenitors but by endothelial- and cancer cells and it was suggested that erythropoietin (EPO) may affect their functions as well. We have analyzed the effects of recombinant human erythropoietin-alpha (rHuEPOalpha) on radiation sensitivity of EPOR+ human epidermoid carcinoma (A431) xenograft model. In vivo rHuEPOalpha treatment was started after tumor cell inoculation into SCID mice. 5 Gy irradiation was performed on day 14, the effect of which was measured on day 22. Hemoglobin level, tumor-associated microvessels and HIF-1alpha expression of the xenograft were monitored during the experiment. rHuEPOalpha administration prevented the development of tumor-induced anemia of SCID mice and reduced the level of HIF-1alpha expression of the xenograft tumor without affecting tumor growth. We have found that rHuEPOalpha treatment significantly increased the efficacy of antitumor effect of irradiation which was partly mediated by complex effects on tumor-associated microvessels. In vitro rHuEPOalpha did not affect proliferation of A431 cells but enhanced the antiproliferative and proapoptotic effects of irradiation. We concluded that rHuEPOalpha administration positively modulated the antitumoral effects of irradiation at least by two pathways, decreasing systemic hypoxia resulting in decreased tumoral HIF-1alpha expression and enhancing direct effects on tumor-associated microvessels.  相似文献   

11.
Stabilization of the hypoxia-inducible factor-1 (HIF-1) protein is essential for its role as a regulator of gene expression under low oxygen conditions. Here, employing a novel hydroxylation-specific antibody, we directly show that proline 564 of HIF-1alpha and proline 531 of HIF-2alpha are hydroxylated under normoxia. Importantly, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 hydroxylation is diminished with the treatment of hypoxia, cobalt chloride, desferrioxamine, or dimethyloxalyglycine, regardless of the E3 ubiquitin ligase activity of the von Hippel-Lindau (VHL) tumor suppressor gene. Furthermore, in VHL-deficient cells, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 had detectable amounts of hydroxylation following transition to hypoxia, indicating that the post-translational modification is not reversible. The introduction of v-Src or RasV12 oncogenes resulted in the stabilization of normoxic HIF-1alpha and the loss of hydroxylated Pro-564, demonstrating that oncogene-induced stabilization of HIF-1alpha is signaled through the inhibition of prolyl hydroxylation. Conversely, a constitutively active Akt oncogene stabilized HIF-1alpha under normoxia independently of prolyl hydroxylation, suggesting an alternative mechanism for HIF-1alpha stabilization. Thus, these results indicate distinct pathways for HIF-1alpha stabilization by different oncogenes. More importantly, these findings link oncogenesis with normoxic HIF-1alpha expression through prolyl hydroxylation.  相似文献   

12.
13.
14.
Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function   总被引:22,自引:0,他引:22  
  相似文献   

15.
BTN3A2/BT3.2 butyrophilin mRNA expression by tumoral cells was previously identified as a prognostic factor in a small cohort of high grade serous epithelial ovarian cancer (HG-EOC). Here, we evaluated the prognostic value of BT3.2 at the protein level in specimen from 199 HG-EOC patients. As the only known role of butyrophilin proteins is in immune regulation, we evaluated the association between BT3.2 expression and intratumoral infiltration of immune cells by immunohistochemistry with specific antibodies against BT3.2, CD3, CD4, CD8, CD20, CD68 and CD206. Epithelial BT3.2 expression was significantly associated with longer overall survival and lower risk of disease progression (HR?=?0.651, p?=?0.006 and HR?=?0.642, p?=?0.002, respectively) and significantly associated with a higher density of infiltrating T cells, particularly CD4+ cells (0.272, p<0.001). We also observed a strong association between the relative density of CD206+ cells, as evaluated by the ratio of intratumoral CD206+/CD68+ expression, and risk of disease progression (HR?=?1.355 p?=?0.044, respectively). In conclusion, BT3.2 protein is a potential prognostic biomarker for the identification of HG-EOC patients with better outcome. In contrast, high CD206+/CD68+ expression is associated with high risk of disease progression. While the role of BT3.2 is still unknown, our result suggest that BT3.2 expression by epithelial cells may modulates the intratumoral infiltration of immune cells.  相似文献   

16.
缺氧诱导因子(hypoxia inducible factor,HIF)对维持肿瘤细胞的能量代谢、肿瘤血管生成、促进肿瘤细胞增殖和转移起着重要作用,是肿瘤细胞低氧条件下产生的关键信号分子。本综述旨在总结前人研究,阐述HIF与肾癌细胞之间的内在关系。HIF成员是参与肾癌细胞对缺氧应答反应中的关键因子,并通过靶基因的调节,促进新生血管的生成,导致肿瘤生长。其中,HIF-1α及HIF-2α在促进新生血管的生成方面发挥着主要作用。HIF-1α及HIF-2α与VEGF密切相关,随着其的表达增高,VEGF在数量上及m RNA水平上均显著增高,显示其可通过调控VEGF参与肾癌血管生成,而HIF-2α转录激活VEGF m RNA的特异性较HIF-1α更强。HIF-3α可能存在的负性调控作用,其异构体-4的作用可能与HIF-lα的负性调节有关,其可以阻止HIF-lα与下游靶基因的缺氧反应元件(hypoxia response elements,HRE)结合,同时可在转录水平抑制HIF-lα。HIF在未来可能有成为肾细胞癌治疗的靶点。  相似文献   

17.
缺氧诱导因子(HIF-1alpha)是肿瘤细胞生长过程中重要的调控因子,研究其作用机制有利于实现对肿瘤细胞增殖的抑制作用。 HIF-1alpha可引起多种基因转录,使肿瘤细胞耐受低氧环境,进而使癌症患者在治疗过程中产生耐受反应,最终影响治疗效果,甚至 放弃治疗。因此,以HIF-1alpha为靶点是治疗肿瘤的重要手段和方法。本文对HIF-1alpha的基本概况及其主要信号通路(PI3K 通路、 HSP90 通路及MAPK通路)以及不同通路抑制剂(如LY294002、17AAG、PD98059、U0126、SB203580、SP600125 等)进行综述,并 对HIF-1alpha的应用前景进行展望。  相似文献   

18.
BACKGROUND: Expression of hypoxia-related tissue factors in 1p-aberrant oligodendroglial neoplasms diminishes patient outcome. Differentiated embryo-chondrocyte expressed gene 1 (DEC1) has been described as novel hypoxia-related tissue factor. In our study, we assessed the expression of DEC1 in 1p aberrant oligodendroglial neoplasms and its association with necrosis and expression of hypoxia-inducible factor 1alpha (HIF-1alpha), carbonic anhydrase-9 (CA9), and vascular endothelial growth factor-mRNA (VEGF). MATERIALS AND METHODS: 44 primary and 16 recurrent oligodendroglial neoplasms with 1p-aberrations were investigated immunohistochemically for the expression of DEC1, HIF-1alpha, and CA9. Expression of VEGF was investigated using in situ hybridization. DEC1 expression was correlated with necrosis and with expression of HIF-1alpha, CA9, and VEGF. RESULTS: DEC1 was expressed in tumor cell nuclei, and occasionally in nuclei of endothelial cells, and glial and neuronal cells of surrounding brain tissue. High expression (>10% of tumor cells immunolabeled) of DEC1 was found in 56 cases, low expression (<10% of tumor cells immunolabeled) was found in 3 cases. In 1 case no expression of DEC1 was evident. DEC1 expression showed no topographical association with necrosis or expression of HIF-1alpha, CA9, or VEGF. CONCLUSION: DEC1 expression is found in the majority of 1p-aberrant oligodendroglial neoplasms and does not correlate with necrosis or expression of HIF-1alpha, CA9, VEGF. Thus, immunohistochemical analysis of DEC1 expression is in our hands not suitable for detection of tissue hypoxia in this type of primary brain tumor.  相似文献   

19.
Hypoxia inducible factor-1alpha (HIF-1alpha) mRNA expression is significantly decreased under hypoxia in different cell lines exposed directly to hypoxia or treated with dimethyloxalylglycine which mimics hypoxic effects under normoxic conditions. However, the decreased expression of HIF-1alpha mRNA is accompanied by an increase of HIF-1alpha protein (pHIF-1alpha) level as well as by overexpression of known HIF-dependent genes (VEGF, Glut1, PFKFB-3 and PFKFB-4) under hypoxic conditions or with the use of dimethyloxalylglycine. Expression of HIF-1alpha mRNA also depends on iron because desferrioxamine and cobalt chloride produce similar to hypoxia effects on the levels of this mRNA. It was shown that HIF-1alpha mRNA expression did not change significantly in some cell lines (SKBR3, MDA-MB468 and BT549) under hypoxia. However, in these cell lines hypoxia decreases expression of HIF-2alpha mRNA, another member of HIF-alpha gene family, as a result of cell specific regulation of HIF-alpha genes under hypoxia. Moreover, hypoxia slightly induces expression of PFKFB-4 mRNA in SKBR3, MDA-MB468 and BT549 as compared to other cell lines where this effect of hypoxia was much stronger and adaptation to hypoxia is controlled by HIF-1alpha. Hypoxia slightly reduces expression of tumor suppressor VHL which targets HIF-1alpha for ubiquitination. Thus, our results clearly demonstrated down regulation of HIF-1alpha or HIF-2alpha in different cell lines by hypoxia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号