首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The nuclear matrix is thought to be responsible for DNA organization, DNA replication, RNA synthesis, and RNA processing. We have looked for the presence of nuclear matrix antigens during early mouse embryogenesis. Antibodies to peripheral and interior antigens (P1, Pl1, Pl2, and lamin B) were used to immunolocalize nuclear matrix antigens in germinal vesicle oocytes, metaphase II oocytes, zygotes, two-cell-stage embryos, and eight-cell stage embryos. All antibodies reacted with the nuclei of germinal vesicle oocytes, and two- and eight-cell-stage embryos; however, only P1 and lamin B were present at the pronuclear stage. In eggs collected at the pronuclear stage and cultured to the late two-cell stage in the presence of alpha-amanitin, the matrix morphology was altered for Pl1 and Pl2. alpha-Amanitin had no affect on the distribution of P1 or lamin B antigens. If alpha-amanitin was added 2 hr after cleavage to the two-cell stage, the normal staining pattern of Pl2 was retained. These results suggest that the presence of specific components of an internal matrix is correlated with normal genomic activity.  相似文献   

2.
The objective of this study was to compare iso-osmolar concentrations (1.5 M) of 1,2-propanediol, glycerol, dimethylsulphoxide and a combination of 1 M propanediol + 0.5M glycerol (PDGLY) as cryoprotectants for murine ovulated oocytes and one-cell embryos. A higher (P < 0.01) percentage of one-cell embryos developed to the two-cell stage when frozen-thawed with 1,2-propanediol (83%) as compared with glycerol (43%), dimethylsulfoxide (51%) or PDGLY (7%). Data recalculated on the basis of two-cell embryos/number of normal one-cell embryos after thawing indicated no differences among single cryoprotectant groups. More (P < 0.01) frozen-thawed, in-vitro fertilized oocytes developed to the two-cell stage when 1,2-propanediol (35%) was used as cryoprotectant as compared with glycerol (15%). Freezing-thawing resulted in a reduced number of two-cell embryos after oocytes were fertilized in-vitro as compared with fresh oocytes. 1,2-propanediol was a better cryoprotectant than glycerol, dimethylsulphoxide or PDGLY for deep freezing of murine oocytes or one-cell embryos.  相似文献   

3.
4.
5.
6.
7.
Growing mouse oocytes are physiologically arrested in the G2 phase of prophase of the first meiotic division. Growing oocytes were isolated from ovaries of 9- to 12-day-old mice and fused with parthenogenetic one-cell eggs or two-cell embryos derived from fertilized eggs. Resulting hybrids were injected with Dig-11-dUTP and examined for DNA replication using immunofluorescence. Parthenogenetic one-cell eggs fused at telophase II, G1, and middle-to-late S phase, and also S-phase two-cell blastomeres, were able to trigger DNA synthesis in oocyte germinal vesicle (GV) in the majority of hybrids cultured to the end of the first cell cycle. Activation of replication in the GV occurred within 2-3 h after fusion of growing oocytes with S-phase eggs. We show indirectly that the reactivation of replication in GVs was not dependent on the breakdown of the GV envelope. Although GVs had the ability to renew DNA replication after fusion, the G2 blastomere nuclei were incapable of reinitiating DNA replication under the influence of S-phase one-cell eggs. We hypothesize that the nuclei of growing oocytes arrested in meiotic prophase are in a physiological state that is equivalent to replication-competent G1, and not G2, nuclei.  相似文献   

8.
The development of one- and two-cell mouse embryos to morula-blastula stages was followed in vitro after treatment with low doses of U.V.-light, ionizing radiation or N-acetoxy-2-fluorenylacetamide. Exposure of one-cell embryos to either radiation source 18 and 24 hours after human chorionic gonadotropin injections prevented maturation, most embryos being arrested at the one-cell stage and a few at the two-cell stage. Two-cell embryos, however, were not sensitive to low doses of either U.V. or X-irradiation and developed normally. Treatment of early one-cell embryos with the carcinogen, N-acetoxy-2-fluorenyl-acetamide (0-7 muM), also arrested development, whereas exposure of late one-cell embryos did not completely prevent maturation to morula-blastula stages. Exposure of two-cell embryos to the same concentration of carcinogen had no effect on their development to blastulas. Results with all three agents showed that mouse embryos at the one-cell stage are more sensitive than those at the two-cell stage, as judged by their ability to develop in vitro.  相似文献   

9.
10.
The embryonic poly(A)-binding protein (EPAB) functions in the translational regulation of the maternal messenger RNAs (mRNAs) required during oocyte maturation, fertilization, and early embryo development. Since there is no antibody specific to mammalian EPAB protein, all studies related to the Epab gene could be performed at the mRNA levels except for the investigations in the Xenopus. In this study, we have produced an EPAB-specific antibody. When we examined its expressional distribution in the mouse gonadal and somatic tissues, the EPAB protein was found to be expressed only in the mouse ovary and testis tissues, but it is undetectable level in the somatic tissues including stomach, liver, heart, small intestine, and kidney. Additionally, the spatial and temporal expression patterns of the EPAB and poly(A)-binding protein cytoplasmic 1 (PABPC1) proteins were analyzed in the mouse germinal vesicle (GV) and metaphase II (MII) oocytes, one-cell, and two-cell embryos. While EPAB expression gradually decreased from GV oocytes to two-cell embryos, the PABPC1 protein level progressively increased from GV oocytes to one-cell embryos and remarkably declined in the two-cell embryos ( P < 0.05). We have also described herein that the EPAB protein interacted with Epab, Pabpc1, Ccnb1, Gdf9, and Bmp15 mRNAs dependent upon the developmental stages of the mouse oocytes and early embryos. As a result, we have first produced an EPAB-specific antibody and characterized its expression patterns and interacting mRNAs in the mouse oocytes and early embryos. The findings suggest that EPAB in cooperation with PABPC1 implicate in the translational control of maternal mRNAs during oogenesis and early embryo development.  相似文献   

11.
12.
13.
14.
Preimplantation mouse embryos were individually analyzed for glycogen phosphorylase, P-glucomutase, UDPG, UTP, ATP, and the sum of other nucleotide triphosphates (i.e., GTP + CTP). UDPG changes during starvation and refeeding were also determined. Phosphorylase activity was exceedingly low at the two-cell stage and rose eightfold by the morula stage. P-glucomutase was 2000 times more active than phosphorylase in two-cell embryos and fell progressively to about half the initial level by the eight-cell stage. UDPG was highest in one-cell embryos, fell to less then 20% by the two-cell stage, then recovered to about a 35% level at later stages. The ATP to UTP ratio varied from about 5:1 at the earliest stages to about 3:1 in eight-cell and older embryos. GTP plus CTP was 50% higher than UTP at the one-cell stage but was equal to UTP or lower thereafter. The results combined with earlier data from several laboratories indicate that (1) up to the morula stage the embryo can make glycogen but has difficulty using it because of insufficient glycogen phosphorylase and (2) UDPG and glucose-6-P levels are poorly coordinated, probably due to difficulty (or control) at the UDPG pyrophosphorylase step.  相似文献   

15.
16.
17.
Activation of Akt/Protein Kinase B (PKB) by phosphatidylinositol-3-kinase (PI3K) controls several cellular functions largely studied in mammalian cells, including preimplantation embryos. We previously showed that early mouse embryos inherit active Akt from oocytes and that the intracellular localization of this enzyme at the two-cell stage depends on the T-cell leukemia/lymphoma 1 oncogenic protein, Tcl1. We have now investigated whether Akt isoforms, namely Akt1, Akt2 and Akt3, exert a specific role in blastomere proliferation during preimplantation embryo development. We show that, in contrast to other Akt family members, Akt2 enters male and female pronuclei of mouse preimplantation embryos at the late one-cell stage and thereafter maintains a nuclear localization during later embryo cleavage stages. Depleting one-cell embryos of single Akt family members by microinjecting Akt isoform-specific antibodies into wild-type zygotes, we observed that: (a) Akt2 is necessary for normal embryo progression through cleavage stages; and (b) the specific nuclear targeting of Akt2 in two-cell embryos depends on Tcl1. Our results indicate that preimplantation mouse embryos have a peculiar regulation of blastomere proliferation based on the activity of the Akt/PKB family member Akt2, which is mediated by the oncogenic protein Tcl1. Both Akt2 and Tcl1 are essential for early blastomere proliferation and embryo development.  相似文献   

18.
The polymerase chain reaction (PCR) technique was used to detect a whey acidic protein (WAP) gene and transgene presence in mouse ova cultured to various stages of development after pronuclear microinjection at the one-cell stage. The PCR technique detected an endogenous 442 bp WAP DNA sequence in 78% of one-cell, 88% of two-cell and 94% of four-cell ova, and in 95% of morulae and 97% of blastocysts. The heterologous WAP-human protein C transgene was detected in 88% of one-cell, 88% of two-cell and 44% of four-cell ova, and in 40% of morulae and 29% of blastocysts. For comparison, the integration frequency for transgenic mouse production using the same DNA construct was 22%. After five days ofin vitro culture, embryos that were either developmentally arrested or fragmented were tested for the presence of the transgene. The injected construct was detected in 83% of arrested one-cell, 85% of arrested two-cell, and 85% of fragmented ova. In culture, only 28% of zygotes microinjected with DNA developed to the blastocyst stage compared to 74% of noninjected zygotes, while 63% of zygotes developed to the blastocyst stage after injection of buffer alone. Pronuclear injection of the transgene at concentrations of 1.5, 15 and 50 g ml–1 resulted in 28, 11 and 9% development to blastocysts and 29, 86 and 88% transgene detection, respectively. Transgene detection was 85, 96 and 97% in degenerate embryos at the respective doses of DNA. These data show that pronuclear microinjection of the transgene is detrimental to subsequent embryonic development. Also, unintegrated copies of the transgene probably exist at least until the blastocyst stage, and thereafter are degraded to the extent that they can no longer be detected by PCR.  相似文献   

19.
20.
This study describes the localization of the U2 small nuclear RNA (snRNA) and the major U snRNA group ribonucleoproteins (snRNPs) during bovine preimplantation development. In vitro maturation, fertilization, and oviductal epithelial cell coculture methods were employed to produce several developmental series totalling over 2,000 preimplantation-stage bovine oocytes and embryos. These oocytes and preimplantation embryos were processed for in situ hybridization, immunofluorescence and Northern blotting methods. The U2 snRNA and the major U group snRNPS were localized initially over the germinal vesicle (GV) of preovulatory oocytes but following GV breakdown were released throughout the ooplasm. They subsequently reassociated with both pronuclei during fertilization. From the two-cell to the blastocyst stages, the U2 snRNA and U snRNPs were localized to the interphase nucleus of each blastomere. The levels of U2 snRNA throughout bovine preimplantation development were determined by probing a Northern blot containing total RNA isolated from the following preimplantation bovine embryo stages: one to two cell, eight to 16 cell, early morula (greater than 32 cell), and late morula/early blastocysts. The levels of U2 snRNA remained constant between the one-cell and eight- to 16-cell bovine embryo stages but increased 4.4-fold between the eight- to 16-cell stage and the late morula/early blastocyst stages. The results suggest that a maternal pool of snRNAs is maintained in mammalian preimplantation embryos regardless of the duration of maternal control of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号