首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The adenylate cyclase-stimulatory β2-adrenergic receptor has been purified to apparent homogeneity from hamster lung. Partial amino acid sequence obtained from isolated CNBr peptides was used to clone the gene and cDNA for this receptor. The predicted amino acid sequence for the hamster β2-adrenergic receptor revealed that the protein consists of a single polypeptide chain of 418 aa with consensus N-glycosylation and phosphorylation sites predicted by previous in vitro data. The most striking feature of the receptor protein however, is that it contains seven stretches of hydrophobic residues similar to the proposed seven transmembrane segments of the light receptor rhodopsin. Significant amino acid homology (30-35%) can be found between the hamster β2-adrenergic receptor and rhodopsin within these putative membrane spanning regions. Using a hamster β2-adrenergic receptor probe, the gene and cDNA for the human β2-adrenergic receptor were isolated, revealing a high degree of homology (87%) between the two proteins from different species. Unlike the genes encoding the family of opsin pigments, of which rhodopsin is a member, the genes encoding both hamster and human β2-adrenergic receptors are devoid of introns in their coding as well as 5′ and 3′ untranslated nucleotide sequences. The cloning of the genes and the elucidation of the aa sequences for these G-protein coupled receptors should help to determine the structure-function as well as the evolutionary relationship of these proteins.  相似文献   

2.
Summary The results of studies on 49 families with 107 children and various populations of Caucasoid, Negroid and Mongoloid origin concerning the genetics and population genetics of the 2-glycoprotein I polymorphism are reported. In general the genetical model proposed by Cleve (1968) is confirmed: two autosomal alleles BgN and BgD controlling the phenotypes Bg N-N, Bg N-D and Bg D-D. However, divergences from this model were found in two families. They indicate the assumption of non-genetic factors influencing the phenotype expression rather than more complicated genetical control mechanisms. Within Caucasoid populations phenotype and gene frequencies show almost a homogeneous distribution. This racial stock is striking due to a significant higher 2-glycoprotein I concentration in serum as compared to Negroids and Mongoloids. In connection with this, these racial stocks differ obviously in the gene frequencies: Caucasoids BgN=0.937, Negroids=0.742, Mongoloids =0.780; resp. BgD=0.063, 0.258, 0.220.Supported by the Deutsche Forschungsgemeinschaft.D 77.  相似文献   

3.
Protein kinase CK2 predominantly exists as a heterotetrameric holoenyzme consisting of two catalytic subunits (CK2α) and two non-catalytic subunits (CK2β). Early investigations which we review here had revealed the presence of two types of contacts between CK2α and CK2β: a primary interaction responsible for the stability of the CK2 holoenzyme and stimulatory for the catalytic activity, and a secondary interaction which is inhibitory and in which the acidic loop of CK2β associates with the basic stretch and the (p+1)-loop of CK2α. At the end of the last decade both types of interactions were assumed to occur within the same tetrameric complex. The CK2 holoenyzme structure, however, suggested that the secondary interactions must happen between different CK2 tetramers. Such a behaviour should lead to higher-ordered aggregates consistent with several previous reports about a distinct aggregation propensity of CK2. We demonstrate here that in the CK2 holoenzyme crystals contacts between different CK2 tetramers exists which provide structural details of the secondary CK2α/CK2β interactions. These mainly ionic interactions lead to trimeric rings of CK2 holoenzymes in the crystal. In these rings each CK2 tetramer possesses one CK2α subunit open for substrate binding and another one whose active site is blocked by a secondary contact with CK2β from a neighbouring tetramer. This observation fits to previous findings that salt-sensitive ring-like aggregates of CK2 holoenzymes can exist which possess significant catalytic activity. Furthermore it suggests that earlier ideas about a regulatory role of the enzyme’s aggregation propensity may be worth to be revitalised.  相似文献   

4.
The underlying molecular action of the novel uncoupling proteins 2 and 3 (UCP2 and UCP3) is still under debate. The proteins have been implicated in many cell functions, including the regulation of insulin secretion and regulation of reactive oxygen species (ROS) generation. These effects have mainly been explained by suggesting that the proteins establish a proton leak through the inner mitochondrial membrane (IMM). However, accumulating data question this mechanism and suggest that UCP2 and UCP3 may play other roles, including carrying free fatty acids from the matrix towards the intermembrane space, or contributing to the mitochondrial Ca(2+) uniport. Accordingly, in this review we reflect on these actions of UCP2/UCP3 and discuss alternative explanations for the molecular mechanisms by which UCP2/UCP3 might contribute to aspects of cell function. Based on the potential role of UCP2/UCP3 in regulating mitochondrial Ca(2+) uptake, we propose a scheme whereby these proteins integrate Ca(2+)-dependent signal transduction and energy metabolism in order to meet the energy demand of the cell for its continuous response, adaptation, and stimulation to environmental input.  相似文献   

5.
H19 and Igf2--enhancing the confusion?   总被引:3,自引:0,他引:3  
Genomic imprinting, whereby certain genes are expressed dependent on whether they are maternally or paternally inherited, is restricted to mammals and angiosperm plants. This unusual mode of gene regulation results from the complex interplay between cis-regulatory elements, leading to parent-of-origin-dependent epigenetic modifications and tissue-specific patterns of imprinted gene expression. Many studies of imprinting and imprinted genes have focused on epigenetic effects, such as DNA methylation and chromatin structure. However, it is equally important to explore the interconnected role of regulatory elements at imprinted domains by genetic experiments, including the use of transgenes and deletions.  相似文献   

6.
In the nerve terminals, the active zone protein CAST/ERC2 forms a protein complex with the other active zone proteins ELKS, Bassoon, Piccolo, RIM1 and Munc13-1, and is thought to play an organizational and functional role in neurotransmitter release. However, it remains obscure how CAST/ERC2 regulates the Ca(2+)-dependent release of neurotransmitters. Here, we show an interaction of CAST with voltage-dependent Ca(2+) channels (VDCCs), which are essential for regulating neurotransmitter release triggered by depolarization-induced Ca(2+) influx at the active zone. Using a biochemical assay, we showed that CAST was coimmunoprecipitated with the VDCC β(4)-subunit from the mouse brain. A pull-down assay revealed that the VDCC β(4)-subunit interacted directly with at least the N- and C-terminal regions of CAST. The II-III linker of VDCC α(1)-subunit also interacted with C-terminal regions of CAST; however, the interaction was much weaker than that of β(4)-subunit. Furthermore, coexpression of CAST and VDCCs in baby hamster kidney cells caused a shift in the voltage dependence of activation towards the hyperpolarizing direction. Taken together, these results suggest that CAST forms a protein complex with VDCCs, which may regulate neurotransmitter release partly through modifying the opening of VDCCs at the presynaptic active zones.  相似文献   

7.
Wang W  Jiang Y  Wang C  Luo BH 《Biochemistry》2011,50(43):9264-9272
Integrin bidirectional signaling is mediated by conformational change. It has been shown that the separation of the α- and β-subunit transmembrane/cytoplasmic tails and the lower legs is required for transmitting integrin bidirectional signals across the plasma membrane. In this study, we address whether the separation of the αβ knee is critical for integrin activation and outside-in signaling. By introducing three disulfide bonds to restrict dissociation of the α-subunit thigh domain and β-subunit I-EGF2 domain, we found that two of them could completely abolish integrin inside-out activation, whereas the other could not. This disulfide-bonded mutant, in the context of the activation mutation of the cytoplasmic domain, had intermediate affinity for ligands and was able to mediate cell adhesion. Our data suggest that there exists rearrangement at the interface between the thigh domain and the I-EGF2 domain during integrin inside-out activation. None of the disulfide-bonded mutants could mediate cell spreading upon adhering to immobilized ligands, suggesting that dissociation of the integrin two knees is required for integrin outside-in signaling. Disrupting the interface by introducing a glycan chain into either subunit is sufficient for high affinity ligand binding and cell spreading.  相似文献   

8.
When the receptors for platelet-derived growth factor (PDGF) are activatedthey aggregate, become tyrosine-phosphorylated and elicit a cascade ofdown-stream signals, including mobilization of Ca2+ from intra- andextracellular stores. Receptor mobility in the plane of the membrane isa prerequisite for receptor aggregation and further signalling. Using humanforeskin fibroblasts (AG 1523) and fluorescence recovery afterphotobleaching (FRAP), we therefore assessed the lateral mobilitycharacteristics of PDGF-2 receptors by their diffusioncoefficient (D), and fraction of mobile receptors (R). This was done oncells stimulated with either normal human serum (NHS) or PDGF underdifferent Ca2+-conditions.The results suggest that both intra- and extracellular free Ca2+influence the mobility characteristics of the PDGF-2receptor. Interestingly, the extracellular Ca2+ seems to imposegeneral restrictions on the mobility of receptors, since R increased whenextracellular Ca2+ was quenched with EGTA, whereas intracellularclamping of Ca2+ transients with MABTAM (BAPT/AM) primarily affectedD. When both intra- and extracellular Ca2+ were quenced, D remainedlow and R high, further supporting the proposition that they achievedistinct effects. Inhibition of tyrosine phosphorylation with Erbstatin,partly inhibited the NHS effects and released PDGF-induced receptorimmobilization. Ratio imaging with Fura-2 displayed that both NHS and PDGFinduced changes in intracellular free [Ca2+]. In view of the presentdata it might have important effects on the state of the receptor in themembrane, for instance by regulating its lateral mobility, communicationwith other receptors and signalling functions in the membrane.  相似文献   

9.
10.
Soluble guanylate cyclase (sGC) mediates NO signaling for a wide range of physiological effects in the cardiovascular system and the central nervous system. The α1β1 isoform is ubiquitously distributed in cytosolic fractions of tissues, whereas α2β1 is mainly found in the brain. The major occurrence and the unique characteristic of human sGC α2β1 indicate a special role in the mediation of neuronal communication. We have efficiently purified and characterized the recombinant heme-binding domain of the human sGC α2 subunit (hsGC α2(H)) and heterodimeric α2β1 (hsGC β1(H)-α2(H)) by UV-vis spectroscopy, circular dichrosim spectroscopy, EPR spectroscopy, and homology modeling. The heme dissociation and related NO/CO binding/dissociation of both hsGC α2(H) and hsGC β1(H)-α2(H) were investigated. The two truncated proteins interact with heme noncovalently. The CO binding affinity of hsGC α2(H) is threefold greater than that of human sGC α1(H), whereas the dissociation constant k (1) for dissociation of NO from hsGC α2(H) is sevenfold larger than that for dissociation of NO from hsGC α1(H), although k (2) is almost identical. The results indicate that in comparison with the α1β1 isoform, the brain α2β1 isoform exhibits a distinctly different CO/NO affinity and binding rate in favor of NO signaling, and this is consistent with its physiological role in the activation and desensitization. Molecular modeling and sequence alignments are consistent with the hypothesis that His105 contributes to the different CO/NO binding properties of different isoforms. This valuable information is helpful to understand the molecular mechanism by which human sGC α2β1 mediates NO/CO signaling.  相似文献   

11.
In the mouse olfactory system regulated expression of a large family of G Protein-Coupled Receptors (GPCRs), the Odorant Receptors (ORs), provides each sensory neuron with a single OR identity. In the wiring of the olfactory sensory neuron projections, a complex axon sorting process ensures the segregation of >1,000 subpopulations of axons of the same OR identity into homogeneously innervated glomeruli. ORs are critical determinants in axon sorting, and their presence on olfactory axons raises the intriguing possibility that they may participate in axonal wiring through direct or indirect trans-interactions mediating adhesion or repulsion between axons. In the present work, we used a biophysical assay to test the capacity of ORs to induce adhesion of cell doublets overexpressing these receptors. We also tested the β2 Adrenergic Receptor, a non-OR GPCR known to recapitulate the functions of ORs in olfactory axon sorting. We report here the first evidence for homo- and heterotypic adhesion between cells overexpressing the ORs MOR256-17 or M71, supporting the hypothesis that ORs may contribute to olfactory axon sorting by mediating differential adhesion between axons.  相似文献   

12.
Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2–GDPNP–tRNA complex.  相似文献   

13.
Surfaces of cultured human lymphoid cells RPMI 1788, RPMI 4098, RPMI 8866, Raji, and WI-L2 were found to contain bothβ 2-microglobulin (β 2-μ) and HL-A determinants when tested by direct complement-dependent cytotoxicity andquantitative absorption with different cytotoxic antiβ 2-μ antisera and specific HL-A alloantisera. The same antigenic specificities were found in 3M KCl extracts of these cultured cells with a sensitiveβ 2-μ radioimmunoassay and an HL-A antigen blocking assay. Daudi cells provided a contrast, since noβ 2-μ or HL-A determinants were found on their surfaces or in 3 M KCl extracts prepared from them. Results from specific antibody blocking tests suggest a close association betweenβ 2-μ and HL-A determinants on plasma membranes of cultured human lymphoid cells. A solid state immunoadsorbent containing antiβ 2-μ antibodies effectively removed all detectable HL-A antigenic activity from some 3M KCl extracts of cultured human lymphoid cells as well as from some sera. Adsorption of HL-A antigens to these immunoadsorbents was specific since it was blocked only by prior addition ofβ 2-μ. Once on the antiβ 2-μ immunoadsorbents, HL-A antigens still reacted specifically with HL-A alloantibodies in quantitative absorption experiments. HL-A antigens andβ 2-μ could be eluted from antiβ 2-μ immunoadsorbents with a variety of chaotropic reagents and detergents, but thus far potassium bromide and sodium dodecyl sulfate (SDS) appear to be the most effective. SDS-PAGE of these eluates indicated that HL-A antigens were considerably purified by adsorption to antiβ 2-μ immunoadsorbents and that two major molecular size fragments were distinguishable, i.e., ∼33,000 for HL-A and ∼ 12,000 forβ 2-μ.  相似文献   

14.
The aim of the present paper was to examine, in a comparative way, the occurrence and the mechanisms of the interactions between adenosine A2A receptors (A2ARs) and metabotropic glutamate 5 receptors (mGlu5Rs) in the hippocampus and the striatum. In rat hippocampal and corticostriatal slices, combined ineffective doses of the mGlu5R agonist 2-chloro-5-hydroxyphenylglycine (CHPG) and the A2AR agonist CGS 21680 synergistically reduced the slope of excitatory postsynaptic field potentials (fEPSPs) recorded in CA1 and the amplitude of field potentials (FPs) recorded in the dorsomedial striatum. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway appeared to be involved in the effects of CGS 21680 in corticostriatal but not in hippocampal slices. In both areas, a postsynaptic locus of interaction appeared more likely. N-methyl-D-aspartate (NMDA) reduced the fEPSP slope and FP amplitude in hippocampal and corticostriatal slices, respectively. Such an effect was significantly potentiated by CHPG in both areas. Interestingly, the A2AR antagonist ZM 241385 significantly reduced the NMDA-potentiating effect of CHPG. In primary cultures of rat hippocampal and striatal neurons (ED 17, DIV 14), CHPG significantly potentiated NMDA-induced lactate dehydrogenase (LDH) release. Again, such an effect was prevented by ZM 241385. Our results show that A2A and mGlu5 receptors functionally interact both in the hippocampus and in the striatum, even though different mechanisms seem to be involved in the two areas. The ability of A2ARs to control mGlu5R-dependent effects may thus be a general feature of A2ARs in different brain regions (irrespective of their density) and may represent an additional target for the development of therapeutic strategies against neurological disorders.  相似文献   

15.
We studied whether regulated exocytosis affects the glutamate transporter density in cultured astrocytes, in which the expression of a fluorescently labeled excitatory amino acid transporter 2 (EAAT2-EGFP) predominantly labeled the plasma membrane. The addition of ionomycin that elevates cytosolic Ca2+ strongly increased the fluorescence of FM 4-64 membrane area dye, confirming the presence of regulated exocytosis in transfected astrocytes. However, concomitant with Ca2+-dependent FM 4-64 fluorescence increase, ionomycin induced a significant steady-state decrease in EAAT2-EGFP fluorescence. This is likely due to a secondary inner filter effect since,(i) in the absence of FM 4-64, ionomycin stimulation was ineffective in changing the EAAT2-EGFP fluorescence, and (ii) fluorescence changes in FM 4-64 and EAAT2-EGFP were inversely correlated. To test whether subcellular EAAT2-EGFP structures are translocated from the cytoplasm to the plasma membrane during ionomycin stimulation, EAAT2-EGFP fluorescence was monitored locally at the plasma membrane and a few microns away in the adjacent cytoplasm. Measurements revealed sites with an increase in EAAT2-EGFP plasma membrane fluorescence correlated with a fluorescence decrease beneath the plasma membrane, and sites with plasma membrane fluorescence decrease correlated with fluorescence increase within the adjacent cytoplasm. The sites of rapid translocation/retrieval of EAAT2-EGFP structures to/from the plasma membrane appeared to be distributed in a punctuate pattern around the cell perimeter. The density of EAAT2-EGFP was regulated in a Ca2+-dependent manner, since in the absence of extracellular Ca2+ local translocation/retrieval events were absent, revealing rapid surface density regulation of EAAT2 in astrocytes by regulated exo/endocytosis.  相似文献   

16.
Wang W  Fu G  Luo BH 《Biochemistry》2010,49(47):10158-10165
Integrin conformational changes mediate integrin activation and signaling triggered by intracellular molecules or extracellular ligands. Even though it is known that αβ transmembrane domain separation is required for integrin signaling, it is still not clear how this signal is transmitted from the transmembrane domain through two long extracellular legs to the ligand-binding headpiece. This study addresses whether the separation of the membrane-proximal extracellular αβ legs is critical for integrin activation and outside-in signaling. Using a disulfide bond to restrict dissociation of the α-subunit Calf-2 domain and β-subunit I-EGF4 domain, we were able to abolish integrin inside-out activation and outside-in signaling. In contrast, disrupting the interface by introducing a glycosylation site into either subunit activated integrins for ligand binding through a global conformational change. Our results suggest that the interface of the Calf-2 domain and the I-EGF4 domain is critical for integrin bidirectional signaling.  相似文献   

17.
PDZ domains are key players in signalling pathways. These modular domains generally recognize short linear C-terminal stretches of sequences in proteins that organize the formation of complex multi-component assemblies. The development of new methodologies for the characterization of the molecular principles governing these interactions is critical to fully understand the functional diversity of the family and to elucidate biological functions for family members. Here, we applied an in vitro evolution strategy to explore comprehensively the capacity of PDZ domains for specific recognition of different amino acids at a key position in C-terminal peptide ligands. We constructed a phage-displayed library of the Erbin PDZ domain by randomizing the binding site−2 and adjacent residues, which are all contained in helix α2, and we selected for variants binding to a panel of peptides representing all possible position−2 residues. This approach generated insights into the basis for the common natural class I and II specificities, demonstrated an alternative basis for a rare natural class III specificity for Asp−2, and revealed a novel specificity for Arg−2 that has not been reported in natural PDZ domains. A structure of a PDZ-peptide complex explained the minimum requirement for switching specificity from class I ligands containing Thr/Ser−2 to class II ligands containing hydrophobic residues at position−2. A second structure explained the molecular basis for the specificity for ligands containing Arg−2. Overall, the evolved PDZ variants greatly expand our understanding of site−2 specificities and the variants themselves may prove useful as building blocks for synthetic biology.  相似文献   

18.
p34cdc2: the S and M kinase?   总被引:14,自引:0,他引:14  
In the yeast cell cycle, the induction of two very different processes, DNA synthesis (S-phase) and mitosis (M-phase), requires the same serine/threonine-specific protein kinase p34cdc2, which has been highly conserved through evolution. On the basis of work conducted largely in multicellular eukaryotes, it has recently been suggested that p34cdc2 is able to perform these two mutually exclusive roles by phosphorylating different sets of substrates through a cell cycle-dependent association with other proteins that dictate the substrate specificity of the protein kinase. To recognize its mitotic substrates, p34cdc2 associates with one of the cyclins--a family of proteins of two distinct but related types (A and B) characterized by their periodic destruction at each mitosis. In interphase, the formation of a complex between p34cdc2 and another protein (or proteins) would allow the phosphorylation of a different set of proteins involved in the G1 to S transition. This review focuses on the evidence for this appealing simple model and the nature of the putative substrates proposed.  相似文献   

19.
An unexpected feature of the large mammalian genome is the frequent occurrence of closely linked head-to-head gene pairs. Close apposition of such gene pairs has been suggested to be due to sharing of regulatory elements. We show here that the head-to-head gene pair encoding two small heat shock proteins, B-crystallin and HspB2, is closely linked in all major mammalian clades, suggesting that this close linkage is of selective advantage. Yet B-crystallin is abundantly expressed in lens and muscle and in response to a heat shock, while HspB2 is abundant only in muscle and not upregulated by a heat shock. The intergenic distance between the genes for these two proteins in mammals ranges from 645 bp (platypus) to 1069 bp (opossum), with an average of about 900 bp; in chicken the distance was the same as in duck (1.6 kb). Phylogenetic footprinting and sequence alignment identified a number of conserved sequence elements close to the HspB2 promoter and two farther upstream. All known regulatory elements of the mouse B-crystallin promoter are conserved, except in platypus and birds. The lens-specific region 1 (LSR1) and the heat shock elements (HSEs) lack in birds; in platypus the LSR1 is reduced to a Pax-6 site, while the Pax-6 site in LSR2 and a HSE are absent. Most likely the primordial mammalian B-crystallin promoter had two LSRs and two HSEs. In transfection experiments the platypus B-crystallin promoter retained heat shock responsiveness and lens expression. It also directed lens expression in Xenopus laevis transgenes, as did the HspB2 promoter of rat or blind mole rat. Deletion of the middle of the intergenic region including the upstream enhancer affected the activity of both the rat B-crystallin and the HspB2 promoters, suggesting sharing of the enhancer region by the two promoters.This article contains online supplementary data.Reviewing Editor: Dr. Manyuan Long (Linda Doerwald and Teun Van Rheede) Both authors contributed equally.(Teun van Rheede) Deceased May 21, 2003.  相似文献   

20.
Utsumi Y  Nakamura Y 《Planta》2006,225(1):75-87
The present study established that there are two distinct polymeric forms of isoamylase1 (ISA1) in rice endosperm: presumably a homo-pentamer of ISA1 and a hetero-hexamer composed of five ISA1 and one ISA2. The molecular sizes of the homo- and hetero-oligomers, which could be fractionated by hydrophobic chromatography, were approximately 420–480 and 510–550 kDa, respectively. The hetero-oligomer exhibited higher affinities for various branched polyglucans, especially for phytoglycogen, which had a K m value that was approximately 12 times lower relative to that with the homo-oligomer, although no marked differences were found in chain preferences for debranching of amylopectin and phytoglycogen between these forms. The hetero-oligomer was active even when incubated at 50°C for 10 min, while the homo-multimer was completely inactivated at 40°C in 10 min. When the ISA1 homo-oligomer was incubated with the ISA2 protein expressed in Escherichia coli and applied onto a nondenature polyacrylamide gel, additional debranching activity bands which were specific for the purified ISA1–ISA2 preparation were also detected, indicating that ISA1 and ISA2 combine to form a hetero-oligomer. These results suggest that the hetero-oligomer plays a predominant role in the amylopectin biosynthesis in rice endosperm although the homo-oligomer can complement the function of the hetero-oligomer at least to some extent.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号