首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The p53 family member p63 has been implicated in both the development and maintenance of stratified epithelial tissues, including the epidermis. Increasing data support p63 function in the regenerative capacity of basal keratinocytes by maintaining cell proliferation. Recent studies further suggest this regulation relies on inhibition of p53 activity. In addition, p63 appears to exert separate control over epidermal differentiation, which may involve control of such key signaling molecules as IKKα and Notch. While studies over the past decade have greatly expanded our knowledge of p63 function, much remains to be understood regarding how p63 regulates epidermal homeostasis. Future efforts to identify and validate direct p63 target genes as well as to understand the expression and function of individual p63 isoforms will be important to further define how p63 functions in the control of keratinocyte proliferation and differentiation.  相似文献   

4.
5.
6.
7.
p63 and p73 are members of the p53 protein family and have been shown to play an important role in cell death, development, and tumorigenesis. In particular, p63 has been shown to be involved in the maintenance of epidermal stem cells and in the stratification of the epidermis. Sonic Hedgehog (Shh) is a morphogen that has also been implicated to play a role in epithelial stem cell proliferation and in the development of organs. Recently, Shh has also been shown to play an important role in the progression of a variety of cancers. In this report, we show that p63 and p73 but not p53 overexpression induces Shh expression. In particular, p63gamma and p63beta (both TA and DeltaN isoforms) and TAp73beta isoform induce Shh. Expression of Shh was found to be significantly reduced in mouse embryo fibroblasts obtained from p63-/- mice. The naturally occurring p63 mutant TAp63gamma(R279H) and the tumor suppressor protein p14(ARF) inhibited the TAp63gamma-mediated transactivation of Shh. The region -228 to -102 bp of Shh promoter was found to be responsive to TAp63gamma-induced transactivation and TAp63gamma binds to regions within the Shh promoter in vivo. The results presented in this study implicate p63 in the regulation of the Shh signaling pathway.  相似文献   

8.
The TP53 family member TP63 encodes two main isoforms TAp63 and ΔNp63 with distinct, often opposite functions during development and in the adult. ΔNp63 is crucial for the formation of the ectodermal derivatives and epidermis, while TAp63 is essential for heart development. In the adult, ΔNp63 behaves as a cell survival factor, controlling cell proliferation, adhesion and cell differentiation. In contrast, TAp63 is a proapoptotic factor that protects oocytes from genotoxic insults and prevents premature aging of dermal stem cells. In agreement with these activities, TAp63 is often lost and ΔNp63 overexpressed in cancer cells. Because of their opposite and competitive effects, p63 isoforms could be viewed as Janus two faces. The review focuses on the accumulating data on the p63 functions and regulation in the last decade.  相似文献   

9.
10.
Adrenocortical dysplasia (acd) is a spontaneous autosomal recessive mouse mutation exhibiting caudal truncation, vertebral segmentation defects, hydronephrosis, limb hypoplasia, and perinatal lethality. Acd encodes TPP1, a component of the shelterin complex that maintains telomere integrity, and consequently acd mutant mice have telomere dysfunction and genomic instability. We previously showed that apoptosis is the primary mechanism causing the acd skeletal phenotype, and that p53 deficiency rescues the skeletal defects of the acd phenotype but has no effect on the perinatal lethality. The Trp63 gene encodes multiple isoforms, which play a role in proliferation, apoptosis, and stem/progenitor cell maintenance. Different p63 isoforms exhibit both proapoptotic (TAp63) and antiapoptotic (ΔNp63) functions. We hypothesized that deficiency of proapoptotic TAp63 isoforms might rescue the acd skeletal phenotype, similar to our previous observations with deficiency of p53. Mice heterozygous for a null allele of TAp63 were crossed to heterozygous acd mice to determine the effect of TAp63 deficiency on the acd mutant phenotype. In contrast to our results with the acd?×?p53 cross, skeletal anomalies were not rescued by deficiency of TAp63. In fact, the limb and vertebral anomalies observed in double-mutant embryos were more severe than those of embryos with the acd mutation alone, demonstrating a dose-dependent effect. These studies suggest that TAp63 isoforms do not facilitate p53-like apoptosis during development in response to acd-mediated telomere dysfunction and are consistent with the proposed roles of TAp63 in maintaining genomic stability.  相似文献   

11.
12.
13.
14.
AbstractThe p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family. Facts
  • Distinct physiological roles/functions are performed by specific isoforms.
  • The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
  • Mdm2 binds to all three family members but ubiquitinates only p53.
  • TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
  • The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
  • Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
  • What is the physiological function of the p63/p73 SAM domains?
  • Do the short isoforms of p63 and p73 have physiological functions?
  • What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Subject terms: X-ray crystallography, Solution-state NMR  相似文献   

15.
16.
The p53-related p63 gene encodes six isoforms with differing N and C termini. TAp63 isoforms possess a transactivation domain at the N terminus and are able to transactivate a set of genes, including some targets downstream of p53. Accumulating evidence indicates that TAp63 plays an important role in regulation of cell proliferation, differentiation, and apoptosis, whereas transactivation-inert deltaNp63 functions to inhibit p63 and other p53 family members. Mutations in the p63 gene that abolish p63 DNA-binding and transactivation activities cause human diseases, including ectrodactyly ectodermal dysplasia and facial clefting (EEC) syndrome. In this study, we show that mutant p63 proteins with a single amino acid substitution found in EEC syndrome are DNA binding deficient, transactivation inert, and highly stable. We demonstrate that TAp63 protein expression is tightly controlled by its specific DNA-binding and transactivation activities and that p63 is degraded in a proteasome-dependent, MDM2-independent pathway. In addition, the N-terminal transactivation domain of p63 is indispensable for its protein degradation. Furthermore, the wild-type TAp63gamma can act in trans to promote degradation of mutant TAp63gamma defective in DNA binding, and the TA domain deletion mutant of TAp63gamma inhibits transactivation activity and stabilizes the wild-type TAp63 protein. Taken together, these data suggest a feedback loop for p63 regulation, analogous to the p53-MDM2 feedback loop.  相似文献   

17.
p53, p63, and p73 belong to the p53 family of proteins, which mediate development, differentiation, and various other cellular responses. p53 is involved in many anti-cancer mechanisms, such as cell cycle regulation, apoptosis, and the maintenance of genomic integrity. The p63 gene is controlled by two promoters that direct the expression of two isoforms, one with and one without transactivating properties, known as TAp63 and ΔNp63. In this study, p53-deficient cells (Hep3B and PC-3) and p53-expressing cells (A549 and HepG2) were treated with doxorubicin to examine the possible roles of TAp63 in these cells under genotoxic stress; TAp63 expression was induced in p53-deficient cell lines, but not in p53-expressing cell lines. The ectopic expression of p53 in p53-deficient cells (Hep3B) reduced TAp63 promoter activity, and knockdown of TAp63 attenuated doxorubicin-induced cell growth arrest by promoting cell cycle progression, leading to an increase in the percentage of G(2)/M cells. Moreover, knockdown of TAp63 increased cell sensitivity to doxorubicin-induced genomic damage. Our results suggest that TAp63 may play a compensatory role in cell cycle regulation and DNA damage repair in p53-deficient cancer cells.  相似文献   

18.
19.
The homolog of p53 gene, p63, encodes multiple p63 protein isoforms. TAp63 proteins contain an N-terminal transactivation domain similar to that of p53 and function as tumor suppressors; whereas ΔNp63 isoforms, which lack the intact N-terminal transactivation domain, are associated with human tumorigenesis. Accumulating evidence demonstrating the important roles of p63 in development and cancer development, the regulation of p63 proteins, however, is not fully understood. In this study, we show that peptidyl-prolyl isomerase Pin1 directly binds to and stabilizes TAp63α and ΔNp63α via inhibiting the proteasomal degradation mediated by E3 ligase WWP1. We further show that Pin1 specifically interacts with T538P which is adjacent to the P550PxY543 motif, and disrupts p63α–WWP1 interaction. In addition, while Pin1 enhances TAp63α-mediated apoptosis, it promotes ΔNp63α-induced cell proliferation. Furthermore, knockdown of Pin1 in FaDu cells inhibits tumor formation in nude mice, which is rescued by simultaneous knockdown of WWP1 or ectopic expression of ΔNp63α. Moreover, overexpression of Pin1 correlates with increased expression of ΔNp63α in human oral squamous cell carcinoma samples. Together, these results suggest that Pin1-mediated modulation of ΔNp63α may have a causative role in tumorigenesis.  相似文献   

20.
The major clinical problem in human cancer is metastasis. Metastases are the cause of 90% of human cancer deaths. TAp63 is a critical suppressor of tumorigenesis and metastasis. ΔNp63 acts as a dominant-negative inhibitor to block the function of p53 and TAp63. Although several ubiquitin E3 ligases have been reported to regulate p63 stability, the mechanism of p63 regulation remains partially understood. Herein, we show that CHIP, an E3 ligase with a U-box domain, physically interacts with p63 and promotes p63 degradation. Notably, Hsp70 depletion by siRNA stabilizes TAp63 in H1299 cells and destabilizes ΔNp63 in SCC9 cells. Loss of Hsp70 results in a reduction in the TAp63-CHIP interaction in H1299 cells and an increase in the interaction between ΔNp63 and CHIP in SCC9 cells. Our results reveal that Hsp70 acts as a molecular switch to control CHIP-mediated ubiquitination and degradation of p63 isoforms. Furthermore, regulation of p63 by the Hsp70-CHIP axis contributes to the migration and invasion of tumor cells. Hence, our findings demonstrate that Hsp70 is a crucial regulator of CHIP-mediated ubiquitination and degradation of p63 isoforms and identify a new pathway for maintaining TAp63 or ΔNp63 stability in cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号