首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Trichoderma spp. are known for their biocontrol activity against several plant pathogens. A specific isolate of Trichoderma harzianum, 303/02, has the potential to inhibit the growth of Sclerotinia sclerotiorum, an important agent involved in several crop diseases. In this study, the interaction between T. harzianum 303/02 and mycelia, sclerotia and apothecia of S. sclerotiorum was studied by scanning electron microscopy. RT-qPCR was used to examine the expression of 11 genes potentially involved in biocontrol. T. harzianum 303/02 parasitizes S. sclerotiorum by forming branches that coil around the hyphae. The fungus multiplied abundantly at the sclerotia and apothecia surface, forming a dense mycelium that penetrated the inner surface of these structures. The levels of gene expression varied according to the type of structure with which T. harzianum was interacting. The data also showed the presence of synergistic action between the cell-wall degrading enzymes.  相似文献   

4.
The Ssp1 development-specific protein is the most abundant soluble protein in sclerotia and apothecia of Sclerotinia sclerotiorum. Although closely associated with these developmental stages, the functions of the Ssp1 protein and its paralog, Ssp2, are not known. In this study, protein structure prediction analysis revealed that Ssp1 and Ssp2 are structurally similar to fucose-specific lectins. In an effort to understand the function of these abundant, development-specific proteins, a homokaryotic ssp1 deletion mutant was generated. The resulting mutant (Δssp1) displays a wild-type growth and development phenotype in culture but produces approximately 50% fewer sclerotia in cultures supplemented with hygromycin. Genetic complementation with a wild-type copy of ssp1 restores normal sclerotium formation in the presence of hygromycin. This suggests that Ssp1 might play a role in resistance to glycoside-containing antibiotics encountered in the environment. Although a slight delay in carpogenic germination was observed, no additional effects of ssp1 loss-of-function were found in regards to apothecial morphology or fecundity. When the expression of ssp2 was examined in the Δssp1 mutant, it was found to be expressed earlier in sclerotial development and its encoded protein accumulated to higher levels in both sclerotia and apothecia. These findings suggest regulatory compensation for loss of Ssp1 coupled with potential functional redundancy among lectins accumulating in sclerotia and apothecia.  相似文献   

5.
6.
7.
Polysaccharide capsules are important virulence factors for many microbial pathogens including the opportunistic fungus Cryptococcus neoformans. In the present study, we demonstrate an unusual role for a secreted lactonohydrolase of C. neoformans, LHC1 in capsular higher order structure. Analysis of extracted capsular polysaccharide from wild-type and lhc1Δ strains by dynamic and static light scattering suggested a role for the LHC1 locus in altering the capsular polysaccharide, both reducing dimensions and altering its branching, density and solvation. These changes in the capsular structure resulted in LHC1-dependent alterations of antibody binding patterns, reductions in human and mouse complement binding and phagocytosis by the macrophage-like cell line J774, as well as increased virulence in mice. These findings identify a unique molecular mechanism for tertiary structural changes in a microbial capsule, facilitating immune evasion and virulence of a fungal pathogen.  相似文献   

8.
9.
10.
11.
12.
The phage-shock protein PspE and GlpE of the glycerol 3-phosphate regulon of Salmonella enterica serovar Typhimurium are predicted to belong to the class of thiosulfate sulfurtransferases, enzymes that traffic sulfur between molecules. In the present study we demonstrated that the two genes contribute to S. Typhimurium virulence, as a glpE and pspE double deletion strain showed significantly decreased virulence in a mouse model of systemic infection. However, challenge of cultured epithelial cells and macrophages did not reveal any virulence-associated phenotypes. We hypothesized that their contribution to virulence could be in sulfur metabolism or by contributing to resistance to nitric oxide, oxidative stress, or cyanide detoxification. In vitro studies demonstrated that glpE but not pspE was important for resistance to H2O2. Since the double mutant, which was the one affected in virulence, was not affected in this assay, we concluded that resistance to oxidative stress and the virulence phenotype was most likely not linked. The two genes did not contribute to nitric oxid stress, to synthesis of essential sulfur containing amino acids, nor to detoxification of cyanide. Currently, the precise mechanism by which they contribute to virulence remains elusive.  相似文献   

13.
Biological control agents (BCAs) Bacillus subtilis QST 713, Coniothyrium minitans CON/M/91-08, Streptomyces lydicus WYEC 108, and Trichoderma harzianum T-22 were evaluated for their efficacy in the reduction of survival of sclerotia and production of apothecia of Sclerotinia sclerotiorum under controlled environments. A growth chamber assay was conducted where 25 sclerotia were buried in pots containing potting soil, and BCAs were drenched into the soil at various concentrations, and five soybean seeds were planted in each pot. The presence and number of S. sclerotiorum apothecia were recorded daily. Sclerotinia sclerotiorum sclerotia were retrieved six weeks after seeding and viability was assessed on water agar plates. All BCAs were effective in reducing S. sclerotiorum inoculum at various efficacies. In general, efficacy was positively correlated with the rate of application. At the rate of application when the efficacy did not change significantly by increasing the rate, the BCAs had various reductions of apothecia and sclerotia. B. subtilis reduced apothecia and sclerotia by 91.2 and 29.6%, respectively; C. minitans reduced apothecia and sclerotia by 81.2 and 50%, respectively; Streptomyces lydicus reduced apothecia and sclerotia by 100 and 29.6%, respectively; Trichoderma harzianum reduced apothecia and sclerotia by 80.5 and 31.7%, respectively. In addition, the commercial strain of C. minitans CON/M/91-08, and a wild Michigan strain of C. minitans W09 were compared for their growth and sclerotial reduction. W09 had faster growth rate than the commercial strain, indicating potential diversities of biological control strains to be studied.  相似文献   

14.
15.
16.
Although quorum-sensing (QS) systems are important regulators of virulence gene expression in the opportunistic human pathogen Pseudomonas aeruginosa, their detailed regulatory mechanisms have not been fully characterized. Here, we show that deletion of PA2588 resulted in increased production of pyocyanin and biofilm, as well as enhanced pathogenicity in a mouse model. To gain insights into the function of PA2588, we performed a ChIP-seq assay and identified 28 targets of PA2588, including the intergenic region between PA2588 and pqsH, which encodes the key synthase of Pseudomonas quinolone signal (PQS). Though the C-terminal domain was similar to DNA-binding regions of other AraC family members, structural studies revealed that PA2588 has a novel fold at the N-terminal region (NTR), and its C-terminal HTH (helix-turn-helix) domain is also unique in DNA recognition. We also demonstrated that the adaptor protein ClpS, an essential regulator of ATP-dependent protease ClpAP, directly interacted with PA2588 before delivering CdpR to ClpAP for degradation. We named PA2588 as CdpR (ClpAP-degradation and pathogenicity Regulator). Moreover, deletion of clpP or clpS/clpA promotes bacterial survival in a mouse model of acute pneumonia infection. Taken together, this study uncovered that CdpR is an important QS regulator, which can interact with the ClpAS-P system to regulate the expression of virulence factors and pathogenicity.  相似文献   

17.
18.
The Hermansky-Pudlak syndrome (HPS) is a genetic hypopigmentation and bleeding disorder caused by defective biogenesis of lysosome-related organelles (LROs) such as melanosomes and platelet dense bodies. HPS arises from mutations in any of 8 genes in humans and 16 genes in mice. Two of these genes, HPS1 and HPS4, encode components of the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Herein we show that recombinant HPS1-HPS4 produced in insect cells can be efficiently isolated as a 1:1 heterodimer. Analytical ultracentrifugation reveals that this complex has a molecular mass of 146 kDa, equivalent to that of the native complex and to the sum of the predicted molecular masses of HPS1 and HPS4. This indicates that HPS1 and HPS4 interact directly in the absence of any other protein as part of BLOC-3. Limited proteolysis and deletion analyses show that both subunits interact with one another throughout most of their lengths with the sole exception of a long, unstructured loop in the central part of HPS4. An interaction screen reveals a specific and strong interaction of BLOC-3 with the GTP-bound form of the endosomal GTPase, Rab9. This interaction is mediated by HPS4 and the switch I and II regions of Rab9. These characteristics indicate that BLOC-3 might function as a Rab9 effector in the biogenesis of LROs.  相似文献   

19.
The fungus Sclerotinia sclerotiorum is a necrotrophic plant pathogen causing significant damage on a broad range of crops. This fungus produces sclerotia that serve as the long‐term survival structures in the life cycle and the primary inoculum in the disease cycle. Melanin plays an important role in protecting mycelia and sclerotia from ultraviolet radiation and other adverse environmental conditions. In this study, two genes, SCD1 encoding a scytalone dehydratase and THR1 encoding a trihydroxynaphthalene reductase, were disrupted by target gene replacement, and their roles in mycelial growth, sclerotial development and fungal pathogenicity were investigated. Phylogenetic analyses indicated that the deduced amino acid sequences of SCD1 and THR1 were similar to the orthologues of Botrytis cinerea. Expression of SCD1 was at higher levels in sclerotia relative to mycelia. THR1 was expressed at similar levels in mycelia and sclerotia at early stages, but was up‐regulated in sclerotia at the maturation stage. Disruption of SCD1 or THR1 did not change the pathogenicity of the fungus, but resulted in slower radial growth, less biomass, wider angled hyphal branches, impaired sclerotial development and decreased resistance to ultraviolet light.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号