首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
Despite more than 25 years of research, the molecular targets of quinoline-3-carboxamides have been elusive although these compounds are currently in Phase II and III development for treatment of autoimmune/inflammatory diseases in humans. Using photoaffinity cross-linking of a radioactively labelled quinoline-3-carboxamide compound, we could determine a direct association between human S100A9 and quinoline-3-carboxamides. This interaction was strictly dependent on both Zn++ and Ca++. We also show that S100A9 in the presence of Zn++ and Ca++ is an efficient ligand of receptor for advanced glycation end products (RAGE) and also an endogenous Toll ligand in that it shows a highly specific interaction with TLR4/MD2. Both these interactions are inhibited by quinoline-3-carboxamides. A clear structure-activity relationship (SAR) emerged with regard to the binding of quinoline-3-carboxamides to S100A9, as well as these compounds potency to inhibit interactions with RAGE or TLR4/MD2. The same SAR was observed when the compound''s ability to inhibit acute experimental autoimmune encephalomyelitis in mice in vivo was analysed. Quinoline-3-carboxamides would also inhibit TNFα release in a S100A9-dependent model in vivo, as would antibodies raised against the quinoline-3-carboxamide–binding domain of S100A9. Thus, S100A9 appears to be a focal molecule in the control of autoimmune disease via its interactions with proinflammatory mediators. The specific binding of quinoline-3-carboxamides to S100A9 explains the immunomodulatory activity of this class of compounds and defines S100A9 as a novel target for treatment of human autoimmune diseases.  相似文献   

3.
Although doxorubicin (Doxo) and docetaxel (Docet) in combination are widely used in treatment regimens for a broad spectrum of breast cancer patients, a major obstacle has emerged in that some patients are intrinsically resistant to these chemotherapeutics. Our study aimed to discover potential prediction markers of drug resistance in needle-biopsied tissues of breast cancer patients prior to neoadjuvant chemotherapy. Tissues collected before chemotherapy were analyzed by mass spectrometry. A total of 2,331 proteins were identified and comparatively quantified between drug sensitive (DS) and drug resistant (DR) patient groups by spectral count. Of them, 298 proteins were differentially expressed by more than 1.5-fold. Some of the differentially expressed proteins (DEPs) were further confirmed by Western blotting. Bioinformatic analysis revealed that the DEPs were largely associated with drug metabolism, acute phase response signaling, and fatty acid elongation in mitochondria. Clinical validation of two selected proteins by immunohistochemistry found that FKBP4 and S100A9 might be putative prediction markers in discriminating the DR group from the DS group of breast cancer patients. The results demonstrate that a quantitative proteomics/bioinformatics approach is useful for discovering prediction markers of drug resistance, and possibly for the development of a new therapeutic strategy.  相似文献   

4.
The specificity of the CD4 T-cell immune response to influenza virus is influenced by the genetic complexity of the virus and periodic encounters with variant subtypes and strains. In order to understand what controls CD4 T-cell reactivity to influenza virus proteins and how the influenza virus-specific memory compartment is shaped over time, it is first necessary to understand the diversity of the primary CD4 T-cell response. In the study reported here, we have used an unbiased approach to evaluate the peptide specificity of CD4 T cells elicited after live influenza virus infection. We have focused on four viral proteins that have distinct intracellular distributions in infected cells, hemagglutinin (HA), neuraminidase (NA), nucleoprotein, and the NS1 protein, which is expressed in infected cells but excluded from virion particles. Our studies revealed an extensive diversity of influenza virus-specific CD4 T cells that includes T cells for each viral protein and for the unexpected immunogenicity of the NS1 protein. Due to the recent concern about pandemic avian influenza virus and because CD4 T cells specific for HA and NA may be particularly useful for promoting the production of neutralizing antibody to influenza virus, we have also evaluated the ability of HA- and NA-specific CD4 T cells elicited by a circulating H1N1 strain to cross-react with related sequences found in an avian H5N1 virus and find substantial cross-reactivity, suggesting that seasonal vaccines may help promote protection against avian influenza virus.In recent decades, investigators studying both murine and human T-cell responses to influenza virus have succeeded in identifying peptide epitopes from immunized or vaccinated individuals that are the targets of CD4 T cells. These studies suggest a considerable diversity in CD4 responses. Epitopes derived from hemagglutinin (HA), neuraminidase (NA), nuclear protein (NP), polymerase (PB1 and PB2), matrix (M1), and nonstructural protein (NS1) have all been identified (9, 19, 25-28, 32, 61, 64, 85, 86). Our own laboratory previously analyzed the peptide specificity of CD4 T cells in the primary response of HLA-DR1 transgenic mice toward a human isolate of influenza virus and found that the CD4 T-cell repertoire specific for HA alone was diverse and encompassed at least 30 different peptide epitopes (63). In general, studies with humans have been much less systematic than those with the mouse because of the difficulty in obtaining lymphocyte samples from recently infected individuals and because of the complexity of major histocompatibility complex (MHC) molecules expressed in humans. However, recent studies with MHC class II tetramer reagents (19, 61, 64, 72, 86) have permitted the visualization of CD4 T cells specific for influenza virus directly ex vivo or after a brief (10- to 14-day) in vitro expansion. Those studies have led to the conclusion that the repertoire of CD4 T cells is more diverse than that of CD8 T cells and that CD4 T cells that are specific for most influenza virus proteins can be detected.We have focused on the identification of the peptide specificity of CD4 T cells during the primary response to influenza virus infection using HLA-DR1 transgenic mice with several goals in mind. First, we seek to understand the intracellular events within influenza virus-infected antigen-presenting cells (APC) that shape the repertoire of the peptide:class II complexes expressed, because these events will play a pivotal role in determining the specificity of the anti-influenza virus CD4 T-cell response. Second, we expect these studies to provide significant new insight into the CD4 T-cell antigen repertoire that becomes established upon natural infection of humans with influenza virus. Finally, because HLA-DR1 is widely expressed in human populations, the results of our experiments and the corresponding peptide epitopes identified can immediately be utilized for analyses of human immune responses to influenza viruses and vaccines.Our work (45, 57, 60, 68, 69) and the works of others (1, 18, 51, 58, 65, 71, 73, 75) regarding CD4 T-cell immunodominance in response to exogenous antigens indicate that CD4 T cells tend to focus on a limited number of peptides. Typical protein antigens that are taken up as a “pulse” by peripheral APC lead to CD4 T-cell priming that is very narrow in specificity, limited to usually only a few (less than five) epitopes. Our mechanistic studies (44, 68, 69) further indicate that immunodominant peptides characteristically display high-stability interactions with the MHC class II molecule. This selectivity in CD4 T-cell responses is at least in part due to DM editing within APC, where DM apparently removes the peptides that have low-stability interactions with class II molecules (44). Therefore, only a limited subset of antigenic peptides arrives at the cell surface at a sufficient density to recruit CD4 T cells.The characteristics of influenza virus infection suggest that the immunodominance hierarchy might not follow the “rules” established for exogenous protein antigens. Because influenza virus is typically not a systemic infection, virus replication is normally restricted to the lung (3, 29, 33, 59). Therefore, the primary source of viral antigens available for CD4 T-cell priming may not be free virus particles but, rather, may be dendritic cells that become infected with influenza virus while in the lung and then migrate to the draining lymph node (4, 5, 33, 35, 48, 52). If so, then one might predict that the specificity of CD4 T cells could more closely resemble the repertoire that is elicited by “endogenous” antigens synthesized within the APC (21). Endogenous antigens that have ready access to the endosomally localized MHC class II molecules, because they are either membrane associated or secreted, are most efficiently presented by class II molecules (46, 53, 67, 84). For the influenza virus-infected dendritic cell, these preferences in antigen access would favor the presentation of peptides derived from HA and NA, leading to the selective priming of CD4 T cells that are reactive to these viral proteins.Several critical questions remain with regard to the specificity of CD4 T cells that are elicited in response to influenza virus infection. The first question is how diverse the repertoire is, with regard to both peptide and protein specificities. The second issue is how the CD4 T-cell repertoire changes over time with repeated encounters with different strains of influenza virus, a common occurrence in humans. A final, very important question is whether CD4 T cells elicited during the primary response have equivalent potentials to promote protection against subsequent infection or if this potential is dependent on their antigen specificities. It is thought that the primary contribution of CD4 T cells to protective immunity is their role in facilitating the production of high-affinity neutralizing antibodies to HA and NA (38, 79). Recent studies by Sette and coworkers (74) suggest that for complex viral pathogens, the delivery of CD4 T-cell help for the production of high-affinity antibodies by B cells may require that the CD4 T cells share viral antigen specificity with the B cells. For influenza virus, the most useful CD4 T cells may therefore be those that are specific for the membrane glycoproteins HA and NA.In the study reported here, we use an unbiased and comprehensive approach to evaluate the peptide specificity of CD4 T cells elicited after live influenza virus infection. We have focused on four viral proteins that have distinct intracellular distributions in infected cells: HA and NA, expressed at the plasma membrane of infected cells and on the exterior of the virion membrane; NP, expressed in the cytoplasm and nucleus of infected cells; and, finally, the NS1 protein, with a distribution similar to that of NP in infected cells but which is excluded from the virion particles. Our studies lead to the conclusion that influenza virus-specific CD4 T cells elicited during the primary response are distributed across all proteins studied and that the NS1 protein is particularly immunogenic. Because of the recent concern about pandemic avian influenza virus and because CD4 T cells specific for HA and NA may be particularly useful for promoting the production of neutralizing antibody, we have also evaluated the ability of HA- and NA-specific CD4 T cells elicited against a circulating H1N1 strain of influenza virus to cross-react with related sequences found in an H5N1 avian virus. We find that priming with an H1N1 virus elicits CD4 T cells that display a significant degree of cross-reactivity with influenza virus epitopes derived from avian viruses.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) replicates primarily in lymphoid tissues where it has ready access to activated immune competent cells. We used one of the major pathways of immune activation, namely, CD40-CD40L interactions, to study the infectability of B lymphocytes isolated from peripheral blood mononuclear cells. Highly enriched populations of B lymphocytes generated in the presence of interleukin-4 and oligomeric soluble CD40L upregulated costimulatory and activation markers, as well as HIV-1 receptors CD4 and CXCR4, but not CCR5. By using single-round competent luciferase viruses complemented with either amphotropic or HIV-derived envelopes, we found a direct correlation between upregulation of HIV-1 receptors and the susceptibility of the B lymphocytes to infection with dual-tropic and T-tropic strains of HIV-1; in contrast, cells were resistant to M-tropic strains of HIV-1. HIV-1 envelope-mediated infection was completely abolished with either an anti-CD4 monoclonal antibody or a peptide known to directly block CXCR4 usage and partially blocked with stromal cell-derived factor 1, all of which had no effect on the entry of virus pseudotyped with amphotropic envelope. Full virus replication kinetics confirmed that infection depends on CXCR4 usage. Furthermore, productive cycles of virus replication occurred rapidly yet under most conditions, without the appearance of syncytia. Thus, an activated immunological environment may induce the expression of HIV-1 receptors on B lymphocytes, priming them for infection with selective strains of HIV-1 and allowing them to serve as a potential viral reservoir.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号