首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candidatus Liberibacter species are Gram‐negative bacteria that live as phloem‐limited obligate parasites in plants, and are associated with several plant diseases. These bacteria are transmitted by insects called psyllids, or jumping plant lice, which feed on plant phloem sap. Citrus huanglongbing (yellow shoot) or citrus greening disease is associated with three different species of Ca. Liberibacter – Ca. L. asiaticus, Ca. L. africanus and Ca. L. americanus – all originally found on different continents. Ca. L. asiaticus is the most severe pathogen, spread by Asian citrus psyllid Diaphorina citri and causing devastating epidemics in several countries. Ca. L. africanus occurs in Africa where it is spread by the African citrus psyllid Trioza erytreae. Ca. Liberibacter solanacearum is associated with diseases in several solanaceous plants, and transmitted by potato psyllid Bactericera cockerelli. Zebra chip disease is causing large damage in potato crops in North America. In Europe Ca. Liberibacter solanacearum is associated with diseases of the Apiaceae family of plants, carrot and celery, and transmitted by psyllids Trioza apicalis and Bactericera trigonica. When Ca. Liberibacter is suspected as the disease agent, the diagnosis is confirmed by DNA‐based detection methods. Ca. Liberibacter‐associated plant diseases can be controlled by using healthy plant propagation material, eradicating symptomatic plants, and by controlling the psyllid populations spreading the disease.  相似文献   

2.
he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting alphaproteobacterial ‘Candidatus Liberibacter asiaticus’ and allied plant pathogens, which cause the devastating citrus disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ called bacteriome: the betaproteobacterium ‘Candidatus Profftella armatura’ in the syncytial cytoplasm at the center of the bacteriome, and the gammaproteobacterium ‘Candidatus Carsonella ruddii’ in uninucleate bacteriocytes. Here we report that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L. americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage acquired the gene from the Profftella lineage via horizontal gene transfer (HGT) after L. crescens diverged from other Liberibacter lineages. K A/K S analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their insect vector’s symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial populations.  相似文献   

3.
Candidatus Liberibacter’ species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from ‘Candidatus Liberibacter asiaticus’ (Las). In order to gain greater insight into ‘Ca. Liberibacter’ biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse ‘Ca. Liberibacter’ species, including those that can infect citrus. Our phylogenetic analysis differentiates ‘Ca. Liberibacter’ species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic ‘Ca. Liberibacter’ species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of ‘Ca. Liberibacter’ species, the introduction of Las in the United States and identifies promising Las targets for disease management.  相似文献   

4.
Huanglongbing (yellow dragon disease) is a destructive disease of citrus. The etiological agent is a noncultured, phloem-restricted alpha-proteobacterium, “Candidatus Liberibacter africanus” in Africa and “Candidatus Liberibacter asiaticus” in Asia. In this study, we used an omp-based PCR-restriction fragment length polymorphism (RFLP) approach to analyze the genetic variability of “Ca. Liberibacter asiaticus” isolates. By using five different enzymes, each the 10 isolates tested could be associated with a specific combination of restriction profiles. The results indicate that the species “Ca. Liberibacter asiaticus,” even within a given region, may comprise several different variants. Thus, omp-based PCR-RFLP analysis is a simple method for detecting and differentiating “Ca. Liberibacter asiaticus” isolates.  相似文献   

5.
6.
The Asian citrus psyllid (AsCP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a highly competent vector of the phloem-inhabiting bacterium Candidatus Liberibacter asiaticus associated with the citrus disease huanglongbing (HLB). Commonly referred to as citrus greening disease in the USA, HLB causes reduced fruit yields, quality, and ultimately tree death and is considered the most serious citrus disease. HLB has become a major limiting factor to the production of citrus worldwide. Studies of HLB have been impeded by the fact that C. Liberibacter has not yet been cultured on artificial nutrient media. After being acquired by a psyllid, C. Liberibacter asiaticus is reported to replicate within the psyllid and is retained by the psyllid throughout its life span. We therefore hypothesized that C. Liberibacter asiaticus could be cultured in vitro using psyllid cell cultures as the medium and investigated the establishment of a pure culture for AsCP cells. Several commercially available insect cell culture media along with some media we developed were screened for viability to culture cells from AsCP embryos. Cells from psyllid tissues adhered to the plate and migration was observed within 24 h. Cells were maintained at 20°C. We successfully established primary psyllid cell cultures, referred to as DcHH-1, for D. citri Hert-Hunter-1, with a new media, Hert-Hunter-70.  相似文献   

7.
8.
The prophage/phage region in the genome of ‘Candidatus Liberibacter asiaticus’, an alpha‐proteobacterium associated with citrus Huanglongbing, included many valuable loci for genetic diversity studies. Previously, a mosaic genomic region (CLIBASIA_05640 to CLIBASIA_05650) was characterized, and this revealed inter‐ and intracontinental variations of ‘Ca. L. asiaticus’. In this study, 267 ‘Ca. L. asiaticus’ isolates collected from eight provinces in China were analysed with a primer set flanking the same mosaic region plus downstream sequence. While most amplicon sizes ranged from 1400 to 2000 bp, an amplicon of 550 bp (S550) was found in 14 samples collected from south‐western China. Sequence analyses showed that S550 was the result of a 1033 bp deletion which included the previously known mosaic region. The genetic nature of the deletion event remains unknown. The regional restriction of S550 suggests that the ‘Ca. L. asiaticus’ population from south‐western China is different from those in eastern China. The small and easy‐to‐detect S550 amplicon could serve as a molecular marker for ‘Ca. L. asiaticus’ epidemiology.  相似文献   

9.
Huanglongbing, or citrus greening, is a devastating disease of citrus plants recently spreading worldwide, which is caused by an uncultivable bacterial pathogen, “Candidatus Liberibacter asiaticus,” and vectored by a phloem-sucking insect, Diaphorina citri. We investigated the infection density dynamics of “Ca. Liberibacter asiaticus” in field populations of D. citri with experiments using field-collected insects to address how “Ca. Liberibacter asiaticus” infection density in the vector insect is relevant to pathogen transmission to citrus plants. Of 500 insects continuously collected from “Ca. Liberibacter asiaticus”-infected citrus trees with pathological symptoms in the spring and autumn of 2009, 497 (99.4%) were “Ca. Liberibacter asiaticus” positive. The infections were systemic across head-thorax and abdomen, ranging from 103 to 107 bacteria per insect. In spring, the infection densities were low in March, at ∼103 bacteria per insect, increasing up to 106 to 107 bacteria per insect in April and May, and decreasing to 105 to 106 bacteria per insect in late May, whereas the infection densities were constantly ∼106 to 107 bacteria per insect in autumn. Statistical analysis suggested that several factors, such as insect sex, host trees, and collection dates, may be correlated with “Ca. Liberibacter asiaticus” infection densities in field D. citri populations. Inoculation experiments with citrus seedlings using field-collected “Ca. Liberibacter asiaticus”-infected insects suggested that (i) “Ca. Liberibacter asiaticus”-transmitting insects tend to exhibit higher infection densities than do nontransmitting insects, (ii) a threshold level (∼106 bacteria per insect) of “Ca. Liberibacter asiaticus” density in D. citri is required for successful transmission to citrus plants, and (iii) D. citri attaining the threshold infection level transmits “Ca. Liberibacter asiaticus” to citrus plants in a stochastic manner. These findings provide valuable insights into understanding, predicting, and controlling this notorious citrus pathogen.  相似文献   

10.
Citrus greening is a destructive disease of citrus in India and many citrus-growing regions around the world. The disease is associated with three Gram negative, fastidious and phloem-limited bacteria in the genus ‘Candidatus Liberibacter’. ‘Ca. L. asiaticus’ is the most wide spread and destructive species. Currently, there is no effective control method available to manage this disease, thus rapid detection, control of its psyllid vector population and removal of affected trees are commonly recommended to manage citrus greening . The present study was conducted to standardize a rapid and sensitive loop-mediated isothermal amplification (LAMP) protocol to detect ‘Ca. L. asiaticus’ in citrus and the psyllid vector Diaphorina citri Kuwayama. A set of six primers were identified from 16S rDNA region of Indian ‘Ca. L. asiaticus’ and the amplification reaction was optimized to 65 °C for 60 min. The amplified DNA produced a ladder-like band pattern on agarose gels, and visually produced an intense green color upon staining with SYBR green. The results were subsequently validated by PCR (polymerase chain reaction) and sequencing of the amplicon. The optimized LAMP protocol is rapid, highly sensitive and cost-effective method for the early detection of citrus greening in citrus groves and nurseries, and could be performed even in small laboratories located in remote places with limited resources.  相似文献   

11.
Citrus decline has become a devastating problem in citrus-growing regions of southern Iran. The affected trees show progressive yellowing of leaves, thinning of the canopy, dieback and total collapse. Despite a number of attempts, the aetiology of the decline has remained uncertain. In the present study, we evaluated the potential association of various biotic and abiotic factors with the decline in the Fars Province of Iran. Biotic agents surveyed included Candidatus Liberibacter asiaticus, Spiroplasma citri, phytoplasmas, Tylenchulus semipenetrans and root infecting fungi and oomycetes. Abiotic factors studied were soil and water salinity, changes in prevailing temperature and other environmental conditions. In our surveys, Ca. L. asiaticus, either alone or in combination with other factors, had the highest frequency of association (92%) with the decline, followed by S. citri (75%). Ca. L. asiaticus was not detected in any of the non-decline trees examined. Pythium or Phytophthora species and a fungus of theFusarium solani species complex were also isolated from roots of many declining trees. Phytoplasmas were found only in few cases, and populations of citrus nematode were often below the threshold of economic loss. Soil/water salinity were in the suitable range for citrus cultivation in most cases. It is suggested that the decline is initiated by Ca. L. asiaticus infection, which is known to weaken the root system and make it vulnerable to infection by opportunistic soil fungi and oomycetes. S. citri, summer temperatures, low air humidity and overbearing of the trees seem to be other potential factors contributing to the intensity of the disease.  相似文献   

12.
Huanglongbing (HLB), presumably caused by the bacterium “Candidatus Liberibacter asiaticus,” is a devastating citrus disease associated with excessive preharvest fruit drop. Lasiodiplodia theobromae (diplodia) is the causal organism of citrus stem end rot (SER). The pathogen infects citrus fruit under the calyx abscission zone (AZ-C) and is associated with cell wall hydrolytic enzymes similar to plant enzymes involved in abscission. By means of DNA sequencing, diplodia was found in “Ca. Liberibacter asiaticus”-positive juice from HLB-symptomatic fruit (S) but not in “Ca. Liberibacter asiaticus”-negative juice. Therefore, the incidence of diplodia in fruit tissues, the impact on HLB-related postharvest decay, and the implications for HLB-related preharvest fruit drop were investigated in Hamlin and Valencia oranges. Quantitative PCR results (qPCR) revealed a significantly (P < 0.001) greater incidence of diplodia in the AZ-C of HLB-symptomatic (S; “Ca. Liberibacter asiaticus” threshold cycle [CT] of <30) than in the AZ-C of in asymptomatic (AS; “Ca. Liberibacter asiaticus” CT of ≥30) fruit. In agreement with the qPCR results, 2 weeks after exposure to ethylene, the incidences of SER in S fruit were 66.7% (Hamlin) and 58.7% (Valencia), whereas for AS fruit the decay rates were 6.7% (Hamlin) and 5.3% (Valencia). Diplodia colonization of S fruit AZ-C was observed by scanning electron microscopy and confirmed by PCR test and morphology of conidia in isolates from the AZ-C after surface sterilization. Diplodia CT values were negatively correlated with ethylene production (R = −0.838 for Hamlin; R = −0.858 for Valencia) in S fruit, and positively correlated with fruit detachment force (R = 0.855 for Hamlin; R = 0.850 for Valencia), suggesting that diplodia colonization in AZ-C may exacerbate HLB-associated preharvest fruit drop.  相似文献   

13.
Citrus Huanglongbing (HLB) also known as citrus greening is one of the most devastating diseases of citrus worldwide. The disease is caused by Candidatus Liberibacter bacterium, vectored by the psyllid Diaphorina citri Kuwayama and Trioza erytreae Del Guercio. Citrus plants infected by the HLB bacterium may not show visible symptoms sometimes for years following infection. The aim of this study was to develop effective gene-specific primer pairs for polymerase chain reaction based method for quick screening of HLB disease. Thirty-two different gene-specific primer pairs, across the Ca. Liberibacter asiaticus genome, were successfully developed. The possibility of these primer pairs for cross-genome amplification across ‘Ca. Liberibacter africanus’ and ‘Ca. Liberibacter americanus’ were tested. The applicability of these primer pairs for detection and differentiation of Ca Liberibacter spp. is discussed.  相似文献   

14.
Denitrification, the reduction of nitrogen oxides (NO3 and NO2) to N2 via the intermediates NO and N2O, is crucial for nitrogen turnover in soils. Cultivation-independent approaches that applied nitrite reductase genes (nirK/nirS) as marker genes to detect denitrifiers showed a predominance of genes presumably derived from as yet uncultured organisms. However, the phylogenetic affiliation of these organisms remains unresolved since the ability to denitrify is widespread among phylogenetically unrelated organisms. In this study, denitrifiers were cultured using a strategy to generally enrich soil microorganisms. Of 490 colonies screened, eight nirK-containing isolates were phylogenetically identified (16S rRNA genes) as members of the Rhizobiales. A nirK gene related to a large cluster of sequences from uncultured bacteria mainly retrieved from soil was found in three isolates classified as Bradyrhizobium sp. Additional isolates were classified as Bradyrhizobium japonicum and Bosea sp. that contained nirK genes also closely related to the nirK from these strains. These isolates denitrified, albeit with different efficiencies. In Devosia sp., nirK was the only denitrification gene detected. Two Mesorhizobium sp. isolates contained a nirK gene also related to nirK from cultured Mesorhizobia and uncultured soil bacteria but no gene encoding nitric oxide or nitrous oxide reductase. These isolates accumulated NO under nitrate-reducing conditions without growth, presumably due to the lethal effects of NO. This showed the presence of a functional nitrite reductase but lack of a nitric oxide reductase. In summary, similar nirK genotypes recurrently detected mainly in soils likely originated from Rhizobia, and functional differences were presumably strain-dependent.  相似文献   

15.
16.
The widespread occurrence of Huanglongbing (HLB) was recorded in sixteen citrus growing states of India using the real‐time quantitative PCR and the derived threshold cycle (Ct) value. All the commercially important citrus varieties of mandarin, sweet orange, lime and lemon, pummelo and Satkara were infected with ‘Candidatus Liberibacter asiaticus’, the bacterium associated with HLB. Ct values positive for HLB were found in all the states except Arunachal Pradesh. The primer–probe combination HLBas‐HLBr‐HLBp was found specific to Ca. L. asiaticus and do not exhibit any cross‐reactivity with other pathogenic residents of citrus.  相似文献   

17.
Citrus greening disease caused by a fastidious bacterium is an important graft transmissible disease in commercial citrus in India and other parts of the world. Polymerase chain reaction (PCR) is a sensitive and convenient method for detection of greening bacterium. A non-phenol chloroform method of DNA extraction was evaluated for DNA quality and PCR based detection of greening bacterium. The method was comparable with a commercial DNA extraction kit (Qiagen) and better than a CTAB based DNA extraction method. To improve the reliability, three primer sets (primers A, B, and C yielding amplicons of 1160 bp, 703 bp and 451 bp, respectively) and two polymerase enzymes (Taq polymerase and Klen Taq polymerase) were evaluated. The primer set C provided better amplification when compared to primer sets A and B. Primer C in combination with Taq polymerase provided amplification band at a DNA template concentration of 100 pg but good amplification band was obtained at still lower DNA template concentration of 0.1 pg when Klen Taq polymerase was used. The standardized PCR protocol combining non-phenol chloroform method of DNA isolation, primer set C and Klen Taq polymerase enzyme was found very effective in detecting greening bacterium in citrus trees. The sequence of cloned amplicon from 16S ribosomal RNA gene had 89–100 % sequence identity with corresponding sequence of Candidatus Liberibacter asiaticus from China, Brazil, Japan and Pune isolate of India, C. Liberibacter americnus from Brazil and C. Liberibacter africanus from Africa.  相似文献   

18.
Liberibacter asiaticus is an unculturable parasitic bacterium of the alphaproteobacteria group hosted by both citrus plants and a psyllid insect vector (Diaphorina citri). In the citrus tree, the bacteria thrive only inside the phloem, causing a systemically incurable and deadly plant disease named citrus greening or Huanglongbing. Currently, all commercial citrus cultivars in production are susceptible to L. asiaticus, representing a serious threat to the citrus industry worldwide. The technical inability to isolate and culture L. asiaticus has hindered progress in understanding the biology of this bacterium directly. Consequently, a deep understanding of the biological pathways involved in the regulation of host–pathogen interactions becomes critical to rationally design future and necessary strategies of control. In this work, we used surrogate strains to evaluate the biochemical characteristics and biological significance of CLIBASIA_03135. This gene, highly induced during early stages of plant infection, encodes a 23 kDa protein and was renamed in this work as LotP. This protein belongs to an uncharacterized family of proteins with an overall structure resembling the LON protease N‐terminus. Co‐immunoprecipitation assays allowed us to identify the Liberibacter chaperonin GroEL as the main LotP‐interacting protein. The specific interaction between LotP and GroEL was reconstructed and confirmed using a two‐hybrid system in Escherichia coli. Furthermore, it was demonstrated that LotP has a native molecular weight of 44 kDa, corresponding to a dimer in solution with ATPase activity in vitro. In Liberibacter crescens, LotP is strongly induced in response to conditions with high osmolarity but repressed at high temperatures. Electrophoretic mobility shift assay (EMSA) results suggest that LotP is a member of the LdtR regulon and could play an important role in tolerance to osmotic stress.  相似文献   

19.
"Candidatus Liberibacter asiaticus" is a psyllid-transmitted, phloem-limited alphaproteobacterium and the most prevalent species of "Ca. Liberibacter" associated with a devastating worldwide citrus disease known as huanglongbing (HLB). Two related and hypervariable genes (hyv(I) and hyv(II)) were identified in the prophage regions of the Psy62 "Ca. Liberibacter asiaticus" genome. Sequence analyses of the hyv(I) and hyv(II) genes in 35 "Ca. Liberibacter asiaticus" DNA isolates collected globally revealed that the hyv(I) gene contains up to 12 nearly identical tandem repeats (NITRs, 132 bp) and 4 partial repeats, while hyv(II) contains up to 2 NITRs and 4 partial repeats and shares homology with hyv(I). Frequent deletions or insertions of these repeats within the hyv(I) and hyv(II) genes were observed, none of which disrupted the open reading frames. Sequence conservation within the individual repeats but an extensive variation in repeat numbers, rearrangement, and the sequences flanking the repeat region indicate the diversity and plasticity of "Ca. Liberibacter asiaticus" bacterial populations in the world. These differences were found not only in samples of distinct geographical origins but also in samples from a single origin and even from a single "Ca. Liberibacter asiaticus"-infected sample. This is the first evidence of different "Ca. Liberibacter asiaticus" populations coexisting in a single HLB-affected sample. The Florida "Ca. Liberibacter asiaticus" isolates contain both hyv(I) and hyv(II), while all other global "Ca. Liberibacter asiaticus" isolates contain either one or the other. Interclade assignments of the putative Hyv(I) and Hyv(II) proteins from Florida isolates with other global isolates in phylogenetic trees imply multiple "Ca. Liberibacter asiaticus" populations in the world and a multisource introduction of the "Ca. Liberibacter asiaticus" bacterium into Florida.  相似文献   

20.
In our previous study, we have identified five antimicrobial small molecules via structure based design, which inhibit SecA of Candidatus Liberibacter asiaticus (Las). SecA is a critical protein translocase ATPase subunit and is involved in pre-protein translocation across and integration into the cellular membrane in bacteria. In this study, eleven compounds were identified using similarity search method based on the five lead SecA inhibitors identified previously. The identified SecA inhibitors have poor aqueous solubility. Thus a microemulsion master mix (MMX) was developed to address the solubility issue and for application of the antimicrobials. MMX consists of N-methyl-2-pyrrolidone and dimethyl sulfoxide as solvent and co-solvent, as well as polyoxyethylated castor oil, polyalkylene glycol, and polyoxyethylene tridecyl ether phosphate as surfactants. MMX has significantly improved the solubility of SecA inhibitors and has no or little phytotoxic effects at concentrations less than 5.0% (v/v). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the SecA inhibitors and streptomycin against eight bacteria including Agrobacterium tumefaciens, Liberibacter crescens, Rhizobium etli, Bradyrhizobium japonicum, Mesorhizobium loti, and Sinorhizobium meliloti phylogenetically related to Las were determined using the broth microdilution method. MIC and MBC results showed that the 16 SecA inhibitors have antibacterial activities comparable to that of streptomycin. Overall, we have identified 11 potent SecA inhibitors using similarity search method. We have developed a microemulsion formulation for SecA inhibitors which improved the antimicrobial activities of SecA inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号