首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The precise mechanism of TGFβ1 signaling in the progression of non-alcoholic steatohepatitis (NASH) has remained unclear. In particular, a potential regulatory mechanism by which PKCδ affects profibrogenic gene expression had never been explored. In this study, therefore, the role of PKCδ in TGFβ1 mediated α-SMA expression was investigated using NASH model mice. In preparation of the NASH model, male C57BL6/J mice were fed a methionine-choline-deficient (MCD) diet for 3 weeks, after which time they were intraperitoneally injected with lipopolysaccharide (LPS). In addition, Tlr4Lps-d (CH3/HeJ) mice were used to demonstrate the TGFβ1 signaling’s dependency on TLR4 induction. Liver histology and hepatic hepatitis markers were investigated, and hepatic gene expression levels were determined by real-time PCR. Acute liver injury by LPS injection specifically elevated not only α-SMA expression but also phospho-PKCδ in this model. In contrast, Tlr4Lps-d (CH3/HeJ) and blockade of TGFβ1 receptor by SB431542 resulted in a significant reduction of PKCδ activation and α-SMA expression. Moreover, the TGFβ1-induced α-SMA production was significantly reduced by a specific PKCδ inhibitor. These findings suggested that PKCδ plays a critical role in TGFβ1-induced α-SMA production in a NASH model. Thus, this was the first demonstration of the involvement of PKCδ in the regulation of α-SMA expression in NASH liver tissues, and the impaired induction of PKCδ phosphorylation by LPS in a steatohepatitis condition. Interestingly, treatment by PKCδ inhibitor caused dramatic reduction of myofibroblast activation, indicating that PKCδ represents a promising target for treating NASH.  相似文献   

3.
Nonalcoholic steatohepatitis (NASH) is an inflammatory form of nonalcoholic fatty liver disease that progresses to liver cirrhosis. It is still unknown how only limited patients with fatty liver develop NASH. Tumor necrosis factor (TNF)-α is one of the key molecules in initiating the vicious circle of inflammations. Nardilysin (N-arginine dibasic convertase; Nrd1), a zinc metalloendopeptidase of the M16 family, enhances ectodomain shedding of TNF-α, resulting in the activation of inflammatory responses. In this study, we aimed to examine the role of Nrd1 in the development of NASH. Nrd1+/+ and Nrd1−/− mice were fed a control choline-supplemented amino acid-defined (CSAA) diet or a choline-deficient amino acid-defined (CDAA) diet. Fatty deposits were accumulated in the livers of both Nrd1+/+ and Nrd1−/− mice by the administration of the CSAA or CDAA diets, although the amount of liver triglyceride in Nrd1−/− mice was lower than that in Nrd1+/+ mice. Serum alanine aminotransferase levels were increased in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. mRNA expression of inflammatory cytokines were decreased in Nrd1−/− mice than in Nrd1+/+ mice fed the CDAA diet. While TNF-α protein was detected in both Nrd1+/+ and Nrd1−/− mouse livers fed the CDAA diet, secretion of TNF-α in Nrd1−/− mice was significantly less than that in Nrd1+/+ mice, indicating the decreased TNF-α shedding in Nrd1−/− mouse liver. Notably, fibrotic changes of the liver, accompanied by the increase of fibrogenic markers, were observed in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. Similar to the CDAA diet, fibrotic changes were not observed in Nrd1−/− mice fed a high-fat diet. Thus, deletion of nardilysin prevents the development of diet-induced steatohepatitis and liver fibrogenesis. Nardilysin could be an attractive target for anti-inflammatory therapy against NASH.  相似文献   

4.
Recent nutritional epidemiological surveys showed that serum β-cryptoxanthin inversely associates with the risks for insulin resistance and liver dysfunction. Consumption of β-cryptoxanthin possibly prevents nonalcoholic steatohepatitis (NASH), which is suggested to be caused by insulin resistance and oxidative stress from nonalcoholic fatty liver disease. To evaluate the effect of β-cryptoxanthin on diet-induced NASH, we fed a high-cholesterol and high-fat diet (CL diet) with or without 0.003% β-cryptoxanthin to C56BL/6J mice for 12 weeks. After feeding, β-cryptoxanthin attenuated fat accumulation, increases in Kupffer and activated stellate cells, and fibrosis in CL diet-induced NASH in the mice. Comprehensive gene expression analysis showed that although β-cryptoxanthin histochemically reduced steatosis, it was more effective in inhibiting inflammatory gene expression change in NASH. β-Cryptoxanthin reduced the alteration of expression of genes associated with cell death, inflammatory responses, infiltration and activation of macrophages and other leukocytes, quantity of T cells, and free radical scavenging. However, it showed little effect on the expression of genes related to cholesterol and other lipid metabolism. The expression of markers of M1 and M2 macrophages, T helper cells, and cytotoxic T cells was significantly induced in NASH and reduced by β-cryptoxanthin. β-Cryptoxanthin suppressed the expression of lipopolysaccharide (LPS)-inducible and/or TNFα-inducible genes in NASH. Increased levels of the oxidative stress marker thiobarbituric acid reactive substances (TBARS) were reduced by β-cryptoxanthin in NASH. Thus, β-cryptoxanthin suppresses inflammation and the resulting fibrosis probably by primarily suppressing the increase and activation of macrophages and other immune cells. Reducing oxidative stress is likely to be a major mechanism of inflammation and injury suppression in the livers of mice with NASH.  相似文献   

5.
We have previously shown that deletion of protein kinase C epsilon (PKCε) in mice results in protection against glucose intolerance caused by a high fat diet. This was in part due to reduced insulin uptake by hepatocytes and insulin clearance, which enhanced insulin availability. Here we employed mouse embryonic fibroblasts (MEFs) derived from wildtype (WT) and PKCε-deficient (PKCε−/−) mice to examine this mechanistically. PKCε−/− MEFs exhibited reduced insulin uptake which was associated with decreased insulin receptor phosphorylation, while downstream signalling through IRS-1 and Akt was unaffected. Cellular fractionation demonstrated that PKCε deletion changed the localization of the insulin receptor, a greater proportion of which co-fractionated with flotillin-1, a marker of membrane microdomains. Insulin stimulation resulted in redistribution of the receptor in WT cells, while this was markedly reduced in PKCε−/− cells. These alterations in insulin receptor trafficking were associated with reduced expression of CEACAM1, a receptor substrate previously shown to modulate insulin clearance. Virally-mediated reconstitution of PKCε in MEFs increased CEACAM1 expression and partly restored the sensitivity of the receptor to insulin-stimulated redistribution. These data indicate that PKCε can affect insulin uptake in MEFs through promotion of receptor-mediated endocytosis, and that this may be mediated by regulation of CEACAM1 expression.  相似文献   

6.
Phospholipases are critical enzyme mediators participating in many aspects of cellular function through modulating the generation of lipid 2nd messengers, membrane physical properties, and cellular bioenergetics. Here, we demonstrate that mice null for calcium-independent phospholipase A2γ (iPLA2γ−/−) are completely resistant to high fat diet-induced weight gain, adipocyte hypertrophy, hyperinsulinemia, and insulin resistance, which occur in iPLA2γ+/+ mice after high fat feeding. Notably, iPLA2γ−/− mice were lean, demonstrated abdominal lipodystrophy, and remained insulin-sensitive despite having a marked impairment in glucose-stimulated insulin secretion after high fat feeding. Respirometry of adipocyte explants from iPLA2γ−/− mice identified increased rates of oxidation of multiple different substrates in comparison with adipocyte explants from wild-type littermates. Shotgun lipidomics of adipose tissue from wild-type mice demonstrated the anticipated 2-fold increase in triglyceride content after high fat feeding. In sharp contrast, the adipocyte triglyceride content was identical in iPLA2γ−/− mice fed either a standard diet or a high fat diet. Respirometry of skeletal muscle mitochondria from iPLA2γ−/− mice demonstrated marked decreases in state 3 respiration using multiple substrates whose metabolism was uncoupled from ATP production. Shotgun lipidomics of skeletal muscle revealed a decreased content of cardiolipin with an altered molecular species composition thereby identifying the mechanism underlying mitochondrial uncoupling in the iPLA2γ−/− mouse. Collectively, these results identify iPLA2γ as an obligatory upstream enzyme that is necessary for efficient electron transport chain coupling and energy production through its participation in the alterations of cellular bioenergetics that promote the development of the metabolic syndrome.  相似文献   

7.
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein (HDL). We investigated the involvement of apoA-I in diet-induced accumulation of triglycerides in hepatocytes and its potential role in the treatment of nonalcoholic fatty liver disease (NAFLD). ApoA-I–deficient (apoA-I−/−) mice showed increased diet-induced hepatic triglyceride deposition and disturbed hepatic histology while they exhibited reduced glucose tolerance and insulin sensitivity. Quantification of FASN (fatty acid synthase 1), DGAT-1 (diacylglycerol O-acyltransferase 1), and PPARγ (peroxisome proliferator-activated receptor γ) mRNA expression suggested that the increased hepatic triglyceride content of the apoA-I−/− mice was not due to de novo synthesis of triglycerides. Similarly, metabolic profiling did not reveal differences in the energy expenditure between the two mouse groups. However, apoA-I−/− mice exhibited enhanced intestinal absorption of dietary triglycerides (3.6 ± 0.5 mg/dL/min for apoA-I−/− versus 2.0 ± 0.7 mg/dL/min for C57BL/6 mice, P < 0.05), accelerated clearance of postprandial triglycerides and a reduced rate of hepatic very low density lipoprotein (VLDL) triglyceride secretion (9.8 ± 1.1 mg/dL/min for apoA-I−/− versus 12.5 ± 1.3 mg/dL/min for C57BL/6 mice, P < 0.05). In agreement with these findings, adenovirus-mediated gene transfer of apoA-IMilano in apoA-I−/− mice fed a Western-type diet for 12 wks resulted in a significant reduction in hepatic triglyceride content and an improvement of hepatic histology and architecture. Our data extend the current knowledge on the functions of apoA-I, indicating that in addition to its well-established properties in atheroprotection, it is also an important modulator of processes associated with diet-induced hepatic lipid deposition and NAFLD development in mice. Our findings raise the interesting possibility that expression of therapeutic forms of apoA-I by gene therapy approaches may have a beneficial effect on NAFLD.  相似文献   

8.

Background

PKCδ expressed in neutrophils is implicated in promoting reperfusion injury after ischemic stroke. To understand the molecular and cellular actions of PKCδ, we employed a chemical-genetics approach to identify PKCδ substrates in neutrophils.

Results

We recently generated knock-in mice endogenously expressing analog-specific PKCδ (AS-PKCδ) that can utilize ATP analogs as phosphate donors. Using neutrophils isolated from the knock-in mice, we identified several PKCδ substrates, one of which was lipocalin-2 (LCN2), which is an iron-binding protein that can trigger apoptosis by reducing intracellular iron concentrations. We found that PKCδ phosphorylated LCN2 at T115 and this phosphorylation was reduced in Prkcd−/− mice. PKCδ colocalized with LCN2 in resting and stimulated neutrophils. LCN2 release from neutrophils after cerebral ischemia was reduced in PKCδ null mice.

Conclusions

These findings suggest that PKCδ phosphorylates LCN2 and mediates its release from neutrophils during ischemia-reperfusion injury.  相似文献   

9.
CD4 T cells are dispensable for acute control of murine gammaherpesvirus 68 (MHV-68) but are necessary for effective long-term control of the virus by CD8 T cells. In contrast, protein kinase C θ (PKCθ) is not essential for either acute or long-term viral control. However, we found that while either CD4 or CD8 T cells could mediate the clearance of MHV-68 from the lungs of PKCθ+/+ mice, PKCθ−/− mice depleted of either subset failed to clear the virus. These data suggest that there are two alternative pathways for MHV-68 clearance, one dependent on CD4 T cells and the other on PKCθ. Protection mediated by the latter appears to be short-lived. These observations may help to explain the differential requirement for PKCθ in various models of CD8 T-cell activation and differences in the costimulatory requirements for acute and long-term viral control.  相似文献   

10.
11.

Background

PKCθ is a novel protein kinase C isozyme, predominately expressed in T cells and platelets. PKCθ−/− T cells exhibit reduced activation and PKCθ−/− mice are resistant to autoimmune disease, making PKCθ an attractive therapeutic target for immune modulation. Collagen is a major agonist for platelets, operating through an immunoreceptor-like signalling pathway from its receptor GPVI. Although it has recently been shown that PKCθ positively regulates outside-in signalling through integrin αIIbβ3 in platelets, the role of PKCθ in GPVI-dependent signalling and functional activation of platelets has not been assessed.

Methodology/Principal Findings

In the present study we assessed static adhesion, cell spreading, granule secretion, integrin αIIbβ3 activation and platelet aggregation in washed mouse platelets lacking PKCθ. Thrombus formation on a collagen-coated surface was assessed in vitro under flow. PKCθ−/− platelets exhibited reduced static adhesion and filopodia generation on fibrinogen, suggesting that PKCθ positively regulates outside-in signalling, in agreement with a previous report. In contrast, PKCθ−/− platelets also exhibited markedly enhanced GPVI-dependent α-granule secretion, although dense granule secretion was unaffected, suggesting that PKCθ differentially regulates these two granules. Inside-out regulation of αIIbβ3 activation was also enhanced downstream of GPVI stimulation. Although this did not result in increased aggregation, importantly thrombus formation on collagen under high shear (1000 s−1) was enhanced.

Conclusions/Significance

These data suggest that PKCθ is an important negative regulator of thrombus formation on collagen, potentially mediated by α-granule secretion and αIIbβ3 activation. PKCθ therefore may act to restrict thrombus growth, a finding that has important implications for the development and safe clinical use of PKCθ inhibitors.  相似文献   

12.

Background

Nonalcoholic fatty liver disease (NAFLD) is a major public health burden in western societies. The progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), is characterized by hepatosteatosis, inflammation, oxidative stress, and hepatic damage that can progress to fibrosis and cirrhosis; risk factors for hepatocellular carcinoma. Given the scope of NASH, validating treatment protocols (i.e., low fat diets and weight loss) is imperative.

Methods

We evaluated the efficacy of two diets, a non-purified chow (NP) and purified (low-fat low-cholesterol, LFLC) diet to reverse western diet (WD)-induced NASH and fibrosis in Ldlr-/- mice.

Results

Mice fed WD for 22–24 weeks developed robust hepatosteatosis with mild fibrosis, while mice maintained on the WD an additional 7–8 weeks developed NASH with moderate fibrosis. Returning WD-fed mice to the NP or LFLC diets significantly reduced body weight and plasma markers of metabolic syndrome (dyslipidemia, hyperglycemia) and hepatic gene expression markers of inflammation (Mcp1), oxidative stress (Nox2), fibrosis (Col1A, LoxL2, Timp1) and collagen crosslinking (hydroxyproline). Time course analyses established that plasma triglycerides and hepatic Col1A1 mRNA were rapidly reduced following the switch from the WD to the LFLC diet. However, hepatic triglyceride content and fibrosis did not return to normal levels 8 weeks after the change to the LFLC diet. Time course studies further revealed a strong association (r2 ≥ 0.52) between plasma markers of inflammation (TLR2 activators) and hepatic fibrosis markers (Col1A, Timp1, LoxL2). Inflammation and fibrosis markers were inversely associated (r2 ≥ 0.32) with diet-induced changes in hepatic ω3 and ω6 polyunsaturated fatty acids (PUFA) content.

Conclusion

These studies establish a temporal link between plasma markers of inflammation and hepatic PUFA and fibrosis. Low-fat low-cholesterol diets promote reversal of many, but not all, features associated with WD-induced NASH and fibrosis in Ldlr-/- mice.  相似文献   

13.
Nonalcoholic steatohepatitis (NASH) is a disorder characterized by simultaneous fat accumulation and chronic inflammation in the liver. In this study, Pin1 expression was revealed to be markedly increased in the livers of mice with methionine choline-deficient (MCD) diet-induced NASH, a rodent model of NASH. In addition, Pin1 KO mice were highly resistant to MCD-induced NASH, based on a series of data showing simultaneous fat accumulation, chronic inflammation, and fibrosis in the liver. In terms of Pin1-induced fat accumulation, it was revealed that the expression levels of peroxisome proliferator-activated receptor α and its target genes were higher in the livers of Pin1 KO mice than in controls. Thus, resistance of Pin1 KO mice to hepatic steatosis is partially attributable to the lack of Pin1-induced down-regulation of peroxisome proliferator-activated receptor α, although multiple other mechanisms are apparently involved. Another mechanism involves the enhancing effect of hematopoietic Pin1 on the expressions of inflammatory cytokines such as tumor necrosis factor and monocyte chemoattractant protein 1 through NF-κB activation, eventually leading to hepatic fibrosis. Finally, to distinguish the roles of hematopoietic or nonhematopoietic Pin1 in NASH development, mice lacking Pin1 in either nonhematopoietic or hematopoietic cells were produced by bone marrow transplantation between wild-type and Pin1 KO mice. The mice having nonhematopoietic Pin1 exhibited fat accumulation without liver fibrosis on the MCD diet. Thus, hepatic Pin1 appears to be directly involved in the fat accumulation in hepatocytes, whereas Pin1 in hematopoietic cells contributes to inflammation and fibrosis. In summary, this is the first study to demonstrate that Pin1 plays critical roles in NASH development. This report also raises the possibility that hepatic Pin1 inhibition to the appropriate level might provide a novel therapeutic strategy for NASH.  相似文献   

14.
Bones'' strength is achieved and maintained through adaptation to load bearing. The role of the protein kinase PKCα in this process has not been previously reported. However, we observed a phenotype in the long bones of Prkca−/− female but not male mice, in which bone tissue progressively invades the medullary cavity in the mid-diaphysis. This bone deposition progresses with age and is prevented by disuse but unaffected by ovariectomy. Castration of male Prkca−/− but not WT mice results in the formation of small amounts of intramedullary bone. Osteoblast differentiation markers and Wnt target gene expression were up-regulated in osteoblast-like cells derived from cortical bone of female Prkca−/− mice compared with WT. Additionally, although osteoblastic cells derived from WT proliferate following exposure to estradiol or mechanical strain, those from Prkca−/− mice do not. Female Prkca−/− mice develop splenomegaly and reduced marrow GBA1 expression reminiscent of Gaucher disease, in which PKC involvement has been suggested previously. From these data, we infer that in female mice, PKCα normally serves to prevent endosteal bone formation stimulated by load bearing. This phenotype appears to be suppressed by testicular hormones in male Prkca−/− mice. Within osteoblastic cells, PKCα enhances proliferation and suppresses differentiation, and this regulation involves the Wnt pathway. These findings implicate PKCα as a target gene for therapeutic approaches in low bone mass conditions.  相似文献   

15.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR−/−) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR−/− mice fed MCD diet (FXR−/−/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR−/−/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR−/−/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR−/−/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.  相似文献   

16.
Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4−/− mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4−/− mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4−/− mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4−/− BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4−/− brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state.  相似文献   

17.
Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp−/−) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp−/− mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp−/− mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp−/− mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp−/− mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp−/− mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp−/− mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp−/− mice.  相似文献   

18.
The importance of Galectin-3 (Gal-3) in obesity-associated liver pathology is incompletely defined. To dissect the role of Gal-3 in fibrotic nonalcoholic steatohepatitis (NASH), Gal-3-deficient (LGALS3−/−) and wild-type (LGALS3+/+) C57Bl/6 mice were placed on an obesogenic high fat diet (HFD, 60% kcal fat) or standard chow diet for 12 and 24 wks. Compared to WT mice, HFD-fed LGALS3−/− mice developed, in addition to increased visceral adiposity and diabetes, marked liver steatosis, which was accompanied with higher expression of hepatic PPAR-γ, Cd36, Abca-1 and FAS. However, as opposed to LGALS3−/− mice, hepatocellular damage, inflammation and fibrosis were more extensive in WT mice which had an elevated number of mature myeloid dendritic cells, proinflammatory CD11b+Ly6Chi monocytes/macrophages in liver, peripheral blood and bone marrow, and increased hepatic CCL2, F4/80, CD11c, TLR4, CD14, NLRP3 inflammasome, IL-1β and NADPH-oxidase enzymes mRNA expression. Thus, obesity-driven greater steatosis was uncoupled with attenuated fibrotic NASH in Gal-3-deficient mice. HFD-fed WT mice had a higher number of hepatocytes that strongly expressed IL-33 and hepatic CD11b+IL-13+ cells, increased levels of IL-33 and IL-13 and up-regulated IL-33, ST2 and IL-13 mRNA in liver compared with LGALS3−/− mice. IL-33 failed to induce ST2 upregulation and IL-13 production by LGALS3−/− peritoneal macrophages in vitro. Administration of IL-33 in vivo enhanced liver fibrosis in HFD-fed mice in both genotypes, albeit to a significantly lower extent in LGALS3−/− mice, which was associated with less numerous hepatic IL-13-expressing CD11b+ cells. The present study provides evidence of a novel role for Gal-3 in regulating IL-33-dependent liver fibrosis.  相似文献   

19.
20.

Background & Aims

Activation of the renin-angiotensin-system is known to play a role in nonalcoholic steatohepatitis. Renin knockout mice manifest decreased hepatic steatosis. Aliskiren is the first direct renin inhibitor to be approved for clinical use. Our study aims to evaluate the possible therapeutic effects and mechanism of the chronic administration of aliskiren in a dietary steatohepatitis murine model.

Methods

Male C57BL/6 mice were fed with a methionine and choline-deficient (MCD) diet to induce steatohepatitis. After 8 weeks of feeding, the injured mice were randomly assigned to receive aliskiren (50 mg·kg-1 per day) or vehicle administration for 4 weeks. Normal controls were also administered aliskiren (50 mg·kg-1 per day) or a vehicle for 4 weeks.

Results

In the MCD mice, aliskiren attenuated hepatic steatosis, inflammation and fibrosis. Aliskiren did not change expression of lipogenic genes but increase turnover of hepatic fat by up-regulating peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1a, cytochrome P450-4A14 and phosphorylated AMP-activated protein kinase. Furthermore, aliskiren decreased the hepatic expression of angiotensin II and nuclear factor κB. The levels of oxidative stress, hepatocyte apoptosis, activation of Kupffer cells and hepatic stellate cells, and pro-fibrotic markers were also reduced in the livers of the MCD mice receiving aliskiren.

Conclusions

Aliskiren attenuates steatohepatitis and fibrosis in mice fed with a MCD diet. Thus, the noted therapeutic effects might come from not only the reduction of angiotensin II but also the up-regulation of fatty acid oxidation-related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号