首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Endocytosis is a conserved process across species in which cell surface receptors and lipids are internalized from the plasma membrane. Once internalized, receptors can either be degraded or be recycled back to the plasma membrane. A variety of small GTP-binding proteins regulate receptor recycling. Despite our familiarity with many of the key regulatory proteins involved in this process, our understanding of the mode by which these proteins co-operate and the sequential manner in which they function remains limited. In this study, we identify two GTP-binding proteins as interaction partners of the endocytic regulatory protein molecule interacting with casl-like protein 1 (MICAL)-L1. First, we demonstrate that Rab35 is a MICAL-L1-binding partner in vivo. Over-expression of active Rab35 impairs the recruitment of MICAL-L1 to tubular recycling endosomes, whereas Rab35 depletion promotes enhanced MICAL-L1 localization to these structures. Moreover, we demonstrate that Arf6 forms a complex with MICAL-L1 and plays a role in its recruitment to tubular endosomes. Overall, our data suggest a model in which Rab35 is a critical upstream regulator of MICAL-L1 and Arf6, while both MICAL-L1 and Arf6 regulate Rab8a function.  相似文献   

2.
Rab GTPases are regulators of membrane trafficking that cycle between active (GTP-bound) and inactive (GDP-bound) states. In this study, we report the identification of a new human Rab5 guanine nucleotide exchange factor (GEF), which we have named RAP6 (Rab5-activating protein 6). RAP6 contains a Rab5 GEF and a Ras GAP domain. We show that the Vps9 domain is sufficient for the interaction of RAP6 with GDP-bound Rab5 and that RAP6 stimulates Rab5 guanine nucleotide exchange. We also find that the Ras GAP domain of RAP6 shows GAP activity for Ras. Immunofluorescence experiments reveal that RAP6 is associated with plasma membrane and small intracellular vesicles that also contain Rab5. Additionally, the overexpression of RAP6 affects both fluid phase and receptor-mediated endocytosis. This study is the first to show that RAP6 is a novel regulator of endocytosis that exhibits GEF activity specific for Rab5 and GAP activity specific for Ras.  相似文献   

3.
Early endosome antigen 1 (EEA1) is a 170-kDa polypeptide required for endosome fusion in mammalian cells. The COOH terminus of EEA1 contains a FYVE domain that interacts specifically with phosphatidylinositol 3-phosphate (PtdIns-3-P) and a Rab5 GTPase binding region adjacent to the FYVE domain. The dual interaction of EEA1 with both PtdIns-3-P and Rab5 has been hypothesized to provide the specificity required to target EEA1 to early endosomes. To test this hypothesis, we generated truncated (amino acids 1277--1411) and full-length EEA1 constructs containing point mutations in the COOH terminus that impair Rab5 but not PtdIns-3-P binding. These constructs localized to endosomes in intact cells as efficiently as their wild-type counterparts. Furthermore, overexpression of the truncated constructs, both wild-type and mutated, impaired the function of endogenous EEA1 resulting in the accumulation of small, untethered endosomes. These results suggest that association with Rab5 is not necessary for the initial binding and tethering functions of EEA1. A role for Rab5 binding was revealed, however, upon comparison of endosomes in cells expressing full-length wild-type or mutated EEA1. The mutant full-length EEA1 caused the accumulation of endosome clusters and suppressed the enlargement of endosomes caused by a persistently active form of Rab5 (Rab5Q79L). In contrast, expression of wild-type EEA1 with Rab5Q79L enhanced this enlargement. Thus, endosome tethering depends on the interaction of EEA1 with PtdIns-3-P, and its interaction with Rab5 appears to regulate subsequent fusion.  相似文献   

4.
Myosin-Va (Myo5a) is a motor protein associated with synaptic vesicles (SVs) but the mechanism by which it interacts has not yet been identified. A potential class of binding partners are Rab GTPases and Rab3A is known to associate with SVs and is involved in SV trafficking. We performed experiments to determine whether Rab3A interacts with Myo5a and whether it is required for transport of neuronal vesicles. In vitro motility assays performed with axoplasm from the squid giant axon showed a requirement for a Rab GTPase in Myo5a-dependent vesicle transport. Furthermore, mouse recombinant Myo5a tail revealed that it associated with Rab3A in rat brain synaptosomal preparations in vitro and the association was confirmed by immunofluorescence imaging of primary neurons isolated from the frontal cortex of mouse brains. Synaptosomal Rab3A was retained on recombinant GST-tagged Myo5a tail affinity columns in a GTP-dependent manner. Finally, the direct interaction of Myo5a and Rab3A was determined by sedimentation velocity analytical ultracentrifugation using recombinant mouse Myo5a tail and human Rab3A. When both proteins were incubated in the presence of 1 mm GTPγS, Myo5a tail and Rab3A formed a complex and a direct interaction was observed. Further analysis revealed that GTP-bound Rab3A interacts with both the monomeric and dimeric species of the Myo5a tail. However, the interaction between Myo5a tail and nucleotide-free Rab3A did not occur. Thus, our results show that Myo5a and Rab3A are direct binding partners and interact on SVs and that the Myo5a/Rab3A complex is involved in transport of neuronal vesicles.  相似文献   

5.
After mammalian cell invasion, the parasite Toxoplasma multiplies in a self-made membrane-bound compartment, the parasitophorous vacuole (PV). We previously showed that Toxoplasma interacts with many host cell organelles, especially from recycling pathways, and sequestrates Rab11A and Rab11B vesicles into the PV. Here, we examine the specificity of host Rab11 vesicle interaction with the PV by focusing on the recruitment of subpopulations of Rab11 vesicles characterized by different effectors, for example, Rab11-family interacting roteins (FIPs) or Arf6. Our quantitative microscopic analysis illustrates the presence of intra-PV vesicles with FIPs from class I (FIP1C, FIP2, FIP5) and class II (FIP3, FIP4) but to various degrees. The intra-PV delivery of vesicles with class I, but not class II, FIPs is dependent on Rab11 binding. Cell depletion of Rab11A results in a significant decrease in intra-PV FIP5, but not FIP3 vesicles. Class II FIPs also bind to Arf6, and we observe vesicles associated with FIP3-Rab11A or FIP3-Arf6 complexes concomitantly within the PV. Abolishing FIP3 binding to both Rab11 and Arf6 reduces the number of intra-PV FIP3 vesicles. These data point to a selective process of mammalian Rab11 vesicle recognition and scavenging mediated by Toxoplasma, suggesting that specific parasite PV proteins may be involved in these processes.  相似文献   

6.
Eukaryotic cells have developed a diverse repertoire of Rab GTPases to regulate vesicle trafficking pathways. Together with their effector proteins, Rabs mediate various aspects of vesicle formation, tethering, docking and fusion, but details of the biological roles elicited by effectors are largely unknown. Human Rab6 is involved in the trafficking of vesicles at the level of Golgi via interactions with numerous effector proteins. We have previously determined the crystal structure of Rab6 in complex with DENND5, alternatively called Rab6IP1, which comprises two RUN domains (RUN1 and RUN2) separated by a PLAT domain. The structure of Rab6/RUN1-PLAT (Rab6/R1P) revealed the molecular basis for Golgi recruitment of DENND5 via the RUN1 domain, but the functional role of the RUN2 domain has not been well characterized. Here we show that a soluble DENND5 construct encompassing the RUN2 domain binds to the N-terminal region of sorting nexin 1 by surface plasmon resonance analyses.  相似文献   

7.
Cell function requires the integration of cytoskeletal organization and membrane trafficking. Small GTP-binding proteins are key regulators of these processes. We find that EPI64, an apical microvillar protein with a Tre-2/Bub2/Cdc16 (TBC) domain that stabilizes active Arf6 and has RabGAP activity, regulates Arf6-dependent membrane trafficking. Expression of EPI64 in HeLa cells induces the accumulation of actin-coated vacuoles, a distinctive phenotype seen in cells expressing constitutively active Arf6. Expression of EPI64 with defective RabGAP activity does not induce vacuole formation. Coexpression of Rab8a suppresses the vacuole phenotype induced by EPI64, and EPI64 expression lowers the level of Rab8-GTP in cells, strongly suggesting that EPI64 has GAP activity toward Rab8a. JFC1, an effector for Rab8a, colocalizes with and binds directly to a C-terminal region of EPI64. Together this region and the N-terminal TBC domain of EPI64 are required for the accumulation of vacuoles. Through analysis of mutants that uncouple JFC1 from either EPI64 or from Rab8-GTP, our data suggest a model in which EPI64 binds JFC1 to recruit Rab8a-GTP for deactivation by the RabGAP activity of EPI64. We propose that EPI64 regulates membrane trafficking both by stabilizing Arf6-GTP and by inhibiting the recycling of membrane through the tubular endosome by decreasing Rab8a-GTP levels.  相似文献   

8.
9.
The reaction of [Mo2Cl4(μ-S2)(μ-2-SC5H3NH-3-SiMe3)(2-SC5H3N-3-SiMe3)2] with phenylhydrazine yields [Mo(NNPh)(2-SC5H3N-3-SiMe3)3] (1). Complex 1 adopts a pentagonal bipyramidal geometry with the phenyldiazenido group occupying an axial position. The structural parameters exhibited by 1 are similar to those of other members of the class of seven coordinate Mo-hydrazido and Mo-diazenido species. Crystal data for C30H41N5Si3S3Mo (1): monoclinic space group P21n, a = 11.600(2), b = 14.880(3), c = 21.681(3) Å, β = 90.46(1)°, V = 3242.2(12) Å3, Z = 4; 5690 reflections, R = 0.049.  相似文献   

10.
Reactions of [CpCo(PPh3)2](Cp=η5-cyclopentadienyl) with conjugated diacetylenes were investigated in terms of the synthesis of π-conjugated organometallic polymers. The reaction of an α,β-diyne, PhCC---CCPh, gave three geometric isomers of dialkynylcobaltacyclopentadienes, 1a-c, and an insoluble polymeric product, 1d. A 2,4-dialkynyl complex, 2, and a 2,5-dialkynyl complex, 3, were obtained solely from Me3SiCC---CCSiMe3 and MeCC---CCMe, respectively. 1,1′-Bis(trimethylsilylethynyl)-4,4′-biphenyl afforded two isomers of 1,3-dialkynylcyclobutadiene complexes, 4a and 4b. The stability of the one-electron oxidized forms of the cobalacyclopentadiene and cyclobutadiene complexes was examined by cyclic voltammetry.  相似文献   

11.
The reactions of [(H5C6)3P]2ReH6 with (CH3CN)3Cr(CO)3, (diglyme)Mo(CO)3 or (C3H7CN)3W(CO)3 led to the formation of [(H5C6)3P]2ReH6M(CO)3 (M = Cr, Mo, W) complexes. These have been characterized by IR and NMR spectroscopies, as well as elemental analyses. A single crystal X-ray diffraction study has also been carried out for the M = Cr complex as a K(18-crown-6)+ salt. The complex crystallizes as a THF monosolvate in the monoclinic space group P21/n with a = 22.323(6), B = 9.523(2), C = 27.502(5) Å, β = 104.98(2)0 and V = 5648 Å3 for Z = 4. The Re---Cr separation is 2.5745(12) Å, and the two phosphine ligands are oriented unsymmetrically. Although the hydride ligands were not found, the presence of three bridging hydrides and a dodecahedral coordination geometry about rhenium could be inferred. Low temperature 1H and 31P NMR spectroscopic studies did not reveal the low symmetry of the solid state structure.  相似文献   

12.
13.

Background

The present study aimed to examine the role of matrix metalloproteinase (MMP)‐3 [(–1171) 5A/6A; Lys45Glu (A/G)], MMP‐7 [(–181) A/G] and MMP‐12 [(–82) A/G; Asn357Ser (A/G)] variants in the development and severity of chronic obstructive pulmonary disease (COPD) in Tunisians.

Methods

Plethysmography was performed in all participants to measure forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC parameters. Genotyping of MMP‐3, MMP‐7 and MMP‐12 polymorphisms was carried out in 138 patients with COPD and 216 healthy controls using a polymerase chain reaction–restriction fragment length polymorphism. Serum levels of MMPs and cytokines (interleukin‐6, tumor necrosis factor‐α) were determined by an enzyme‐linked immunosorbent assay.

Results

No significant correlations were observed between genetic variations in MMP‐3, MMP‐7 and MMP‐12 and the risk of development of COPD. Additionally, no impact of MMP‐7 (–181) A/G and MMP‐12 [(–82) A/G; Asn357Ser (A/G)] polymorphisms was observed on the respective protein levels and clinical parameters of the disease. Interestingly, both MMP‐3 (–1171) 5A/6A and Lys45Glu (A/G) variants were associated with respiratory function, as well as with serum levels of MMP‐3 in COPD patients. A relationship was found between the (–1171) 6A and 45Glu (G) alleles of the MMP‐3 gene and enhanced airflow limitation among COPD patients. Additionally, carriers of the 6A6A and 45 GG genotypes present higher MMP‐3 levels than noncarriers.

Conclusions

MMP‐3 (–1171) 5A/6A and Lys45Glu (A/G) polymorphisms were associated with the decline of lung function among COPD patients. These results could be linked to the upregulation of MMP‐3 in serum from COPD patients carrying the (–1171) 6A and 45 G homozygous genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号