首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains that gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts that biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

2.
A variant of the apolipoprotein E gene, APOE*4, is associated with both sporadic Alzheimer’s disease (AD) and a subset of familial AD and this association is stronger with early as opposed to late onset AD. Both APOE*4 and α1-antichymotrypsin (ACT) will accelerate the rate of amyloid filament formation and are major constituents of the plaques associated with AD. We now show that a dinucleotide microsatellite allele in the 5′-flanking sequence of the ACT gene, designated A10, in association with APOE*4 significantly increases the risk of developing sporadic AD, which accounts for the majority of AD cases. Received: 15 May 1996 / Revised: 7 July 1996  相似文献   

3.
Nosologically, Alzheimer disease (AD) is not a single disorder. A minority of around 400 families worldwide can be grouped as hereditary in origin, whereas the majority of all Alzheimer cases (approx. 25 million worldwide) are sporadic in origin. In the pathophysiology of the latter type, a number of susceptibility genes contribute to the disease among which are allelic abnormalities of the apolipoprotein E4 gene pointing to a link between disturbed cholesterol metabolism and sporadic AD. Cholesterol is a main component of membrane composition enriched in microdomains and is functionally linked to the proteolytic processing of amyloid precursor protein (APP). In sporadic AD, a marked diminution of both membrane phospholipids and cholesterol has been found. Evidence has been provided that high plasma cholesterol may protect from AD. In contrast to these well documented abnormalities observed in AD patients, it was assumed that an elevated cholesterol concentration might favour the generation of β-amyloid and, thus, AD. However, a series of in vitro-and in vivo-studies did not provide evidence for the assumption that an enhanced cholesterol concentration increased βA4-production. A harsh reduction of membrane cholesterol only caused a “beneficial” effect of APP metabolism. However, this experimentally induced condition may not be compatible to sporadic AD. The application of statins in sporadic AD did not yield results to assume that this therapeutic strategy may prevent or treat successfully sporadic AD. Dedicated to Professor John P. Blass.  相似文献   

4.
Alzheimer's disease (AD) pathology and early‐onset dementia develop almost universally in Down syndrome (DS). AD is defined neuropathologically by the presence of extracellular plaques of aggregated amyloid β protein and intracellular neurofibrillary tangles (NFTs) of aggregated hyperphosphorylated tau protein. The development of radiolabeled positron emission tomography (PET) ligands for amyloid plaques and tau tangles enables the longitudinal assessment of the spatial pattern of their accumulation in relation to symptomatology. Recent work indicates that amyloid pathology develops 15–20 years before neurodegeneration and symptom onset in the sporadic and autosomal dominant forms of AD, while tau pathology correlates more closely with symptomatic stages evidenced by cognitive decline and dementia. Recent work on AD biomarkers in DS illustrates similarities between DS and sporadic AD. It may soon be possible to apply recently developed staging classifications to DS to obtain a more nuanced understanding of the development AD in DS and to provide more accurate diagnosis and prognosis in the clinic.  相似文献   

5.
An alternative spliced form of the presinilin 2 (PS2) gene (PS2V) lacking exon 5 has previously been reported to be expressed in human brains in sporadic Alzheimer's disease (AD). PS2V encodes the amino-terminal portion of PS2, which contains residues Met1-Leu119 and 5 additional amino acid residues (SSMAG) at its carboxyl terminus. Here we report that PS2V protein impaired the signaling pathway of the unfolded protein response, similarly to familial AD-linked PS1 mutants and caused significant increases in the production of both amyloid beta40 and beta42. Interestingly, PS2V-encoding protein was expressed in neuropathologically affected neurons of the hippocampal CA1 region and temporal cortex in AD patients. These findings suggest that the aberrant splicing of the PS2 gene may be implicated in the neuropathology of sporadic AD.  相似文献   

6.
A Yamamoto  T Suzuki  Y Sakaki 《Gene》2001,271(2):159-169
We previously reported the isolation of a novel apoptosis-related gene, human Nap1 (HGMW-approved symbol NCKAP1), the expression of which was strongly down-regulated in sporadic Alzheimer's disease (AD). Human Nap1 proved to be an orthologue of rat Nap1 which binds to the adaptor molecule Nck in signal transduction. In order to further elucidate the function of human Nap1, we performed yeast two-hybrid screening. As a result of screening, we discovered a protein designated hNap1BP (human Nap1 binding protein) which is a member of the tyrosine kinase-binding protein family. In addition, hNap1BP bound to the SH3 domain of c-Abl and Nck. hNap1BP is expressed ubiquitously in various tissues like human Nap1, and intriguingly these genes are co-expressed in hippocampus and cerebral cortex in mouse brain where AD pathological features are strongly evident. Further functional analysis of hNap1BP may clarify its contribution to AD pathology.  相似文献   

7.
Alzheimer disease (AD) is associated with extracellular deposition of proteolytic fragments of amyloid precursor protein (APP). Although mutations in APP and proteases that mediate its processing are known to result in familial, early onset forms of AD, the mechanisms underlying the more common sporadic, yet genetically complex forms of the disease are still unclear. Four single-nucleotide polymorphisms within the ubiquilin-1 gene have been shown to be genetically associated with AD, implicating its gene product in the pathogenesis of late onset AD. However, genetic linkage between ubiquilin-1 and AD has not been confirmed in studies examining different populations. Here we show that regardless of genotype, ubiquilin-1 protein levels are significantly decreased in late onset AD patient brains, suggesting that diminished ubiquilin function may be a common denominator in AD progression. Our interrogation of putative ubiquilin-1 activities based on sequence similarities to proteins involved in cellular quality control showed that ubiquilin-1 can be biochemically defined as a bona fide molecular chaperone and that this activity is capable of preventing the aggregation of amyloid precursor protein both in vitro and in live neurons. Furthermore, we show that reduced activity of ubiquilin-1 results in augmented production of pathogenic amyloid precursor protein fragments as well as increased neuronal death. Our results support the notion that ubiquilin-1 chaperone activity is necessary to regulate the production of APP and its fragments and that diminished ubiquilin-1 levels may contribute to AD pathogenesis.  相似文献   

8.
Alzheimer's disease (AD) is a multifactorial disorder determined by the interaction of genetic, metabolic, and environmental factors. In the common late-onset familial and sporadic forms of AD apolipoprotein E type 4 allele (APOE-epsilon4) is now widely accepted as a major risk factor. The association of estrogen treatment with a reduction in the risk of AD together with the modulation by estrogen of the secretory metabolism of the amyloid precursor protein offers new possibilities for identification of other AD susceptibility genes, as those encoding for the estrogen receptors (ERs). A total of 193 patients with sporadic late-onset AD, meeting the NINCDS-ADRDA criteria, and a total of 202 control subjects, age and education matched, were included in this study. PvuII and XbaI ERalpha and HhaI APOE gene polymorphisms were evaluated in genomic DNA by Polymerase Chain Reaction (PCR). The frequency of the various ERalpha genotypes by the combination of P, p and X, x was calculated for controls and AD patients stratified based on ApoE typing. When the two ERalpha gene polymorphisms were analyzed in combination, 7 genotypes were recognized, with a significantly increased prevalence of PPXX genotype in AD patients compared to controls (P = 0.0001). Risk of AD increased by a factor of 7.6 (CI [1.10-62.3]) in homozygous APOE-epsilon4 individuals with PPXX ERalpha genotype. These results are consistent with a segregation of PPXX ERalpha genotype with a higher risk of developing late-onset sporadic AD in the Italian population. The ERalpha gene appears to interact with the APOE-epsilon4 genotype in determining AD susceptibility.  相似文献   

9.
Genetic AD (Alzheimer's disease) accounts for only few AD cases and is almost exclusively associated with increased amyloid production in the brain. Instead, most patients are affected with the sporadic form of AD and typically have altered clearance mechanisms. The identification of factors that influence the onset and progression of sporadic AD is a key step towards understanding its mechanism(s) and developing successful therapies. An increasing number of epidemiological studies describe a strong association between AD and cardiovascular risk factors, particularly hypertension, that exerts detrimental effects on the cerebral circulation, favouring chronic brain hypoperfusion. However, a clear demonstration of a pathophysiological link between cardiovascular risk factors and AD aetiology is still missing. To increase our knowledge of the mechanisms involved in the brain's response to hypertension and their possible role in promoting amyloid deposition in the brain, we have performed and investigated in depth different murine models of hypertension, induced either pharmacologically or mechanically, leading in the long term to plaque formation in the brain parenchyma and around blood vessels. In the present paper, we review the major findings in this particular experimental setting that allow us to study the pathogenetic mechanisms of sporadic AD triggered by vascular risk factors.  相似文献   

10.
The amyloid precursor protein (APP) gene codes for the precursor to the beta-protein found in the amyloid deposits of Alzheimer disease (AD). Recently Goate et al. identified in codon 717 of this gene a missense mutation which segregates with AD in a familial AD (FAD) kindred. The same mutation was also found in affected subjects from a second FAD family but not in other FAD families or in normal controls. The following work was undertaken to determine the frequency of the codon 717 mutation in FAD and nonfamilial AD cases and in normal controls. We tested 76 FAD families, 127 "sporadic" AD subjects, 16 Down syndrome cases, and 256 normal controls for this mutation, and none were positive. We also tested for the APP codon 693 mutation associated with hereditary cerebral hemorrhage with amyloidosis-Dutch type, for PRIP gene missense mutations at codons 102, 117, and 200, and for the PRIP insertion mutations which are associated with Creutzfeld-Jakob disease and Gerstmann-Straussler Scheinker syndrome. No examples of these mutations were found in our population. Thus these APP and PRIP mutations are rare in both FAD and nonfamilial AD.  相似文献   

11.
Alzheimer's disease (AD) is the most common form of dementia and associated with progressive deposition of amyloid β-peptides (Aβ) in the brain. Aβ derives by sequential proteolytic processing of the amyloid precursor protein by β- and γ-secretases. Rare mutations that lead to amino-acid substitutions within or close to the Aβ domain promote the formation of neurotoxic Aβ assemblies and can cause early-onset AD. However, mechanisms that increase the aggregation of wild-type Aβ and cause the much more common sporadic forms of AD are largely unknown. Here, we show that extracellular Aβ undergoes phosphorylation by protein kinases at the cell surface and in cerebrospinal fluid of the human brain. Phosphorylation of serine residue 8 promotes formation of oligomeric Aβ assemblies that represent nuclei for fibrillization. Phosphorylated Aβ was detected in the brains of transgenic mice and human AD brains and showed increased toxicity in Drosophila models as compared with non-phosphorylated Aβ. Phosphorylation of Aβ could represent an important molecular mechanism in the pathogenesis of the most common sporadic form of AD.  相似文献   

12.
We have measured the levels of typical end products of the processes of lipid peroxidation, protein oxidation, and total antioxidant capacity (TAC) in skin fibroblasts and lymphoblasts taken from patients with familial Alzheimer's disease (FAD), sporadic Alzheimer's disease (AD), and age-matched healthy controls. Compared to controls, the fibroblasts and lymphoblasts carrying amyloid precursor protein (APP) and presenilin-1 (PS-1) gene mutations showed a clear increase in lipoperoxidation products, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). In contrast, the antioxidant defenses of cells from FAD patients were lower than those from normal subjects. Lipoperoxidation and antioxidant capacity in lymphoblasts from patients affected by sporadic AD were virtually indistinguishable from the basal values of normal controls. An oxidative attack on protein gave rise to greater protein carbonyl content in FAD patients than in age-matched controls. Furthermore, ADP ribosylation levels of poly(ADP-ribose) polymerase (PARP) nuclear substrates were significantly raised, whereas the PARP content did not differ significantly between fibroblasts carrying gene mutations and control cells. These results indicate that peripheral cells carrying APP and PS-1 gene mutations show altered levels of oxidative markers even though they are not directly involved in the neurodegenerative process of AD. These results support the hypothesis that oxidative damage to lipid, protein, and DNA is an important early event in the pathogenesis of AD.  相似文献   

13.
There is much evidence suggesting that there is a strong relationship between the deterioration of brain lipid homeostasis, vascular changes and the pathogenesis of Alzheimer's disease (AD). These associations include: (1). recognition that a key cholesterol transporter, apolipoprotein E type 4, acts a major genetic risk factor for both familial and sporadic AD; (2). epidemiological studies linking cardiovascular risk factors, such as hypertension and high plasma cholesterol, to dementia; (3). the discovery that small strokes can precipitate clinical dementia in cognitively normal elderly subjects; (4). the modulation of degradation of the amyloid precursor protein by cholesterol administration in cell culture and in animal models of beta-amyloid overproduction; and (5). the beneficial effect of cholesterol-lowering drugs, such as Probucol and statins, in combating common AD. The recent finding that there is a genetic association between the HMGR gene locus and sporadic AD further suggests that brain cholesterol metabolism is central to AD pathophysiology, and a potential therapeutic target for disease stabilization and primary disease prevention.  相似文献   

14.
晚发性阿尔茨海默病 (LOAD)是老年痴呆中最常见的一种 ,它是一种病因复杂、由遗传因素和环境等其他因素共同作用引起的老年期疾病。服用非甾类抗炎类药物能延缓或防止LOAD的发病说明炎症反应可能参与LOAD病理 ,肿瘤坏死因子 (TNF)是炎症反应中主要的细胞因子 ,并且能增加 β 淀粉样肽 (Aβ)的产生说明其可能是LOAD的易感基因。α2 巨球蛋白 (A2M)是一种血清蛋白酶抑制剂 ,它是低密度脂蛋白受体相关蛋白 (LRP)主要的配体 ,并且能与Aβ结合并介导其降解和清除 ,说明它可能是另一个LOAD的易感基因。在 6 7名晚发性阿尔茨海默病人和 14 2名正常对照中比较了载脂蛋白E基因 (APOE)、TNF启动子区 (- 30 8A G)多态和A2M一 5bp核苷酸缺失 (I D)多态 (A2M 2 )与LOAD发病风险的关系。结果显示 ,APOEε4等位基因在AD病人组中显著高于对照组 (χ2=11 6 6 ,P <0 0 1) ,而TNF(- 30 8A G)多态和A2M缺失多态的基因型和等位基因在LOAD病人组和对照组中都无显著差别 (P >0 1)。按年龄和APOEε4等位基因分组同样无相关性 ,说明TNF 30 8A G位点的多态与A2M缺失不是中国人群的晚发性老年痴呆的风险因子  相似文献   

15.
We sequenced the entire coding region of the amyloid precursor protein (APP) genes of 11 unrelated patients with Japanese familial Alzheimer's disease (FAD) in order to determine the exact frequency of known APP gene mutations and to search for novel mutations responsible for FAD. Three out of 11 (27.3%) FAD patients showed the known Val to Ile mis-sense mutation at codon 717, but no other mutations were detected in the entire coding region. Analysis of exons 16 and 17 in 30 Japanese with sporadic AD revealed no mutations. Moreover, there were no significant differences in the allele frequencies of the DNA polymorphism in intron 9 among the 11 FAD, 39 sporadic AD, and 110 control subjects.  相似文献   

16.
Down syndrome (DS) results in an overproduction of amyloid‐β (Aβ) peptide associated with early onset of Alzheimer's disease (AD). DS cases have Aβ deposits detectable histologically as young as 12–30 years of age, primarily in the form of diffuse plaques, the type of early amyloid pathology also seen at pre‐clinical (i.e., pathological aging) and prodromal stages of sporadic late onset AD. In DS subjects aged >40 years, levels of cortical Aβ deposition are similar to those observed in late onset AD and in addition to diffuse plaques involve cored plaques associated with dystrophic neurites (neuritic plaques), which are of neuropathological diagnostic significance in AD. The purpose of this review is to summarize and discuss findings from amyloid PET imaging studies of DS in reference to postmortem amyloid‐based neuropathology. PET neuroimaging applied to subjects with DS has the potential to (a) track the natural progression of brain pathology, including the earliest stages of amyloid accumulation, and (b) determine whether amyloid PET biomarkers predict the onset of dementia. In addition, the question that is still incompletely understood and relevant to both applications is the ability of amyloid PET to detect Aβ deposits in their earliest form.  相似文献   

17.
The cause of elevated level of amyloid β-peptide (Aβ42) in common late-onset sporadic [Alzheimer's disease (AD)] has not been established. Here, we show that the membrane lipid peroxidation product 4-hydroxynonenal (HNE) is associated with amyloid and neurodegenerative pathologies in AD and that it enhances γ-secretase activity and Aβ42 production in neurons. The γ-secretase substrate receptor, nicastrin, was found to be modified by HNE in cultured neurons and in brain specimens from patients with AD, in which HNE-nicastrin levels were found to be correlated with increased γ-secretase activity and Aβ plaque burden. Furthermore, HNE modification of nicastrin enhanced its binding to the γ-secretase substrate, amyloid precursor protein (APP) C99. In addition, the stimulation of γ-secretase activity and Aβ42 production by HNE were blocked by an HNE-scavenging histidine analog in a 3xTgAD mouse model of AD. These findings suggest a specific molecular mechanism by which oxidative stress increases Aβ42 production in AD and identify HNE as a novel therapeutic target upstream of the γ-secretase cleavage of APP.  相似文献   

18.
Familial Danish dementia is an early onset autosomal dominant neurodegenerative disorder linked to a genetic defect in the BRI2 gene and clinically characterized by dementia and ataxia. Cerebral amyloid and preamyloid deposits of two unrelated molecules (Danish amyloid (ADan) and beta-amyloid (Abeta)), the absence of compact plaques, and neurofibrillary degeneration indistinguishable from that observed in Alzheimer disease (AD) are the main neuropathological features of the disease. Biochemical analysis of extracted amyloid and preamyloid species indicates that as the solubility of the deposits decreases, the heterogeneity and complexity of the extracted peptides exponentially increase. Nonfibrillar deposits were mainly composed of intact ADan-(1-34) and its N-terminally modified (pyroglutamate) counterpart together with Abeta-(1-42) and Abeta-(4-42) in approximately 1:1 mixture. The post-translational modification, glutamate to pyroglutamate, was not present in soluble circulating ADan. In the amyloid fractions, ADan was heavily oligomerized and highly heterogeneous at the N and C terminus, and, when intact, its N terminus was post-translationally modified (pyroglutamate), whereas Abeta was mainly Abeta-(4-42). In all cases, the presence of Abeta-(X-40) was negligible, a surprising finding in view of the prevalence of Abeta40 in vascular deposits observed in sporadic and familial AD, Down syndrome, and normal aging. Whether the presence of the two amyloid subunits is imperative for the disease phenotype or just reflects a conformational mimicry remains to be elucidated; nonetheless, a specific interaction between ADan oligomers and Abeta molecules was demonstrated in vitro by ligand blot analysis using synthetic peptides. The absence of compact plaques in the presence of extensive neuro fibrillar degeneration strongly suggests that compact plaques, fundamental lesions for the diagnosis of AD, are not essential for the mechanism of dementia.  相似文献   

19.
淀粉样蛋白级联假说是阿尔茨海默病(Alzheimer's disease,AD)病因学的核心,但在过去几年中,靶向淀粉样斑块并未实现成功的免疫治疗.最近几年,不同形式的β淀粉样蛋白(Aβ)引起人们的关注.本文总结了关于早发性AD患者大脑中不同Aβ突变体和散发性AD患者大脑中已经鉴定出的经过酶切及修饰产生的不同形式Aβ的...  相似文献   

20.

Background

Advances in genetic technology have revealed that variation in the same gene can cause both rare familial and common sporadic forms of the same disease. Cerebral amyloid angiopathy (CAA), a common cause of symptomatic intracerebral hemorrhage (ICH) in the elderly, can also occur in families in an autosomal dominant pattern. The majority of affected families harbor mutations in the Beta amyloid Peptide (Aβ) coding region of the gene for amyloid precursor protein (APP) or have duplications of chromosomal segments containing APP.

Methodology/Principal Findings

A total of 58 subjects with a diagnosis of probable or definite CAA according to validated criteria were included in the present study. We sequenced the Aβ coding region of APP in 58 individuals and performed multiplex ligation-dependent probe amplification to determine APP gene dosage in 60. No patient harbored a known or novel APP mutation or gene duplication. The frequency of mutations investigated in the present study is estimated to range from 0% to 8% in individuals with probable CAA in the general population, based on the ascertained sample size.

Conclusions/Significance

We found no evidence that variants at loci associated with familial CAA play a role in sporadic CAA. Based on our findings, these rare highly-penetrant mutations are unlikely to be seen in sporadic CAA patients. Therefore, our results do not support systematic genetic screening of CAA patients who lack a strong family history of hemorrhage or dementia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号