首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. Hofmann  V. Speth  E. Schäfer 《Planta》1990,180(3):372-377
The intracellular localisation of phytochrome in oat (Avena sativa L. cv. Garry Oat) coleoptiles was analysed by electron microscopy. Serial ultrathin sections of resin-embedded material were indirectly immunolabeled with polyclonal antibodies against phytochrome together with a gold-coupled second antibody. The limits of detectability of sequestered areas of phytochrome (SAPs) were analysed as a function of light pretreatments and amounts of the far-red absorbing form of phytochrome (Pfr) established. In 5-d-old dark-grownAvena coleoptiles SAPs were not detectable if less than 13 units of Pfr — compared with 100 units total phytochrome of 5-d-old dark-grown seedlings — were established by a red light pulse. In other sets of experiments, seedlings were preirradiated either with a non-saturating red light pulse to allow destruction to occur or with a saturating red followed by a far-red light pulse to induce first SAP formation and then its disaggregation. These preirradiations resulted in an increase of the limit of detectability of SAP formation after a second red light pulse to 38–41 and 19–23 units Pfr, respectively. We conclude that with respect to Pfr-induced SAP formation an adaptation process exists and that our data indicate that SAP formation is not a simple self-aggregation of newly formed Pfr.Abbreviations FR far-red light - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - Plot total phytochrome (Pfr + Pr) - R red light - SAP sequestered areas of phytochrome This work was supported by Deutsche Forschungsgemeinschaft (SFB 206). The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

2.
Germination of Rumex obtusifolius L. seeds (nutlets) is low in darkness at 25° C. Germination is stimulated by exposure to 10 min red light (R) and also by a 10-min elevation of temperature to 35° C. A 10-min exposure to far-red light (FR) can reverse the effect of both R (indicating phytochrome control) and 35° C treatment. Fluence-response curves for this reversal of the effect of R and 35° C treatments are quantitatively identical. Treatment for 10 min with light of wavelenght 680, 700, 710 and 730 nm, after R and 35° C treatment, demonstrates that germination induced by 35° C treatment results from increased sensitivity to a pre-existing, active, far-red-absorbing form of phytochrome (Pfr) in the seeds.Abbreviations FR far-red light - P phytochrome - Pr red-absorbing form of P - Pfr far-red-absorbing form of P - R red light  相似文献   

3.
A set of rat monoclonal antibodies (ARC MAC 48 to 52 and 54 to 56), raised to phytochrome from dark-grown seedlings of Avena sativa L. was tested for the ability to discriminate between the red-absorbing (Pr) and far-red-absorbing (Pfr) forms of phytochrome by indirect enzyme-linked immunosorbent assay. MAC 50 bound more strongly to Pfr and MAC 49 and 52 showed preferential binding to Pr from extracts of dark-grown Avena seedlings; MAC 50 also bound more strongly to Pfr from brushite-purified phytochrome. The remainder of the monoclonal antibodies and a rabbit polyclonal antiphytochrome preparation did not discriminate between Pr and Pfr. The results provide evidence for conformational changes in defined regions of the phytochrome apoprotein upon photoconversion.Abbreviations ELISA enzyme-linked immunosorbent assay - FR far-red light - McAb monoclonal antibody(ies) - PBS phosphate-buffered saline - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - PMSF phenylmethylsulphonylfluoride  相似文献   

4.
V. Speth  V. Otto  E. Schäfer 《Planta》1987,171(3):332-338
The intracellular localisation of phytochrome and ubiquitin in irradiated oat coleoptiles was analysed by electron microscopy. We applied indirect immunolabeling with polyclonal antibodies against phytochrome from etiolated oat seedlings or polyclonal antibodies against ubiquitin from rabbit reticulocytes, together with a goldcoupled second antibody, on serial ultrathin sections of resin-embedded material. Immediately after a 5-min pulse of red light-converting phytochrome from the red-absorbing (Pr) to the far-redabsorbing (Pfr) form-the label for phytochrome was found to be sequestered in electron-dense areas. For up to 2 h after irradiation, the size of these areas increased with increasing dark periods. The ubiquitin label was found in the same electrondense areas only after a dark period of 30 min. A 5 min pulse of far-red light, which reverts Pfr to Pr, given immediately after the red light did not cause the electron-dense structures to disappear; moreover, they contained the phytochrome label immediately after the far-red pulse. In contrast, after the reverting far-red light pulse, ubiquitin could only be visualised in the electron-dense areas after prolonged dark periods (i.e. 60 min). The relevance of these data to light-induced phytochrome pelletability and to the destruction of both Pr and Pfr is discussed.Abbreviations FR far-red light; Pfr - Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - R red light  相似文献   

5.
Avena phytochrome A (phyA) overexpressed in tobacco (Nicotiana tabacum L.) and tomato (Lycopersicon sculentum Mill) was functionally characterised by comparing wild-type (WT) and transgenic seedlings. Different proportions of phytochrome in its far-red-absorbing form (Pfr/P) were provided by end-of-day (EOD) light pulses. Stem-length responses occurred largely in the range of low Pfr/P (3–61%) for WT seedlings and in the range of high Pfr/P (61–87%) for transgenic seedlings. A similar shift was observed when the photoperiod was interrupted by short light pulses providing different Pfr/P ratios and followed by 1 h dark incubation. In other experiments, Avena phyA was allowed to re-accumulate in darkness and subsequently phototransformed to Pfr but no extra inhibition of stem extension growth was observed. In transgenic tomato seedlings the response to EOD far-red light was faster and the response to a far-red light pulse delayed into darkness was larger than in the WT. Avena phyA Pfr remaining at the end of the photoperiod appears intrinsically unable to sustain growth inhibition in subsequent darkness. Avena phyA modifies the sensitivity and the kinetics of EOD responses mediated by native phytochrome.Abbreviations EOD end-of-day - FR far-red light - Pfr/P pro-portion of phytochrome in its FR-absorbing form - phyA phyto-chrome A - phyB phytochrome B - R red light - RFR R to FR ratio - WT wild type We thank Dr Brian Thomas for providing the antibodies used in this work, and Federico Guerendiain for his excellent technical assistance. This work was financially supported by grants UBA AG 040 and Fundacion Antorchas A-12830/1-19 (both to J.J.C.), PID-CONICET (to R.A.S. and J.J.C.), United States Department of Energy DE-FG02-88ER13968 (to R.D.V.).  相似文献   

6.
Michele Cope  Lee H. Pratt 《Planta》1992,188(1):115-122
The intracellular distribution of phytochrome in hypocotyl hooks of etiolated soybean (Glycine max L.) has been examined by immunofluorescence using a newly produced monoclonal antibody (Soy-1) directed to phytochrome purified from etiolated soybean shoots. Cortical cells in the hook region exhibit the strongest phytochrome-associated fluorescence, which is diffusely distributed throughout the cytosol in unirradiated, etiolated seedlings. A redistribution of immunocytochemically detectable hytochrome to discrete areas (sequestering) following irradiation with red light requires a few minutes at room temperature in soybean, whereas this redistribution is reversed rapidly following irradiation with far-red light. In contrast, sequestering in oat (Avena sativa L.) occurs within a few seconds (D. McCurdy and L. Pratt, 1986, Planta 167, 330–336) while its reversal by far-red light requires hours (J. M. Mackenzie Jr. et al., 1975, Proc. Natl. Acad. Sci. USA 72, 799–803). The time courses, however, of red-light-enhanced phytochrome pelletability and sequestering are similar for soybean as they are for oat. Thus, while these observations made with a dicotyledon are consistent with the previous conclusion derived from work with oat, namely that sequestering and enhanced pelletability are different manifestations of the same intracellular event, they are inconsistent with the hypothesis that either is a primary step in the mode of action of phytochrome.Abbreviations DIC differential interference contrast - FR far-red light - Ig immunoglobulin - Pfr, P far-red- and red-absorbing form of phytochrome, respectively - R red light This work was supported by National Science Foundation grant No. DCB-8703057.  相似文献   

7.
M. G. Holmes  W. H. Klein 《Planta》1985,166(3):348-353
Observations made with primary leaves of Phaseolus vulgaris L. demonstrated that phytochrome modulates light-induced stomatal movement. Removal of the far-red-absorbing form of the pigment (Pfr) with far-red (FR) radiation decreased the time required by the stomata to reach maximal opening following a dark-to-light transition; this effect of FR was fully reversible with red. Removal of Pfr with FR also decreased the time required to reach maximal closure following a light-to-dark transition, and the rate of closure was dependent on the final irradiation treatment before darkness. No evidence was found for phytochrome involvement in determining stomatal aperture under constant conditions of either darkness of light.Abbreviations and symbols Chl chlorophyll - D darkness - FR far-red - phytochrome photostationary state - Pfr, Pr FR- and R-absorbing forms of phytochrome, respectively - R red  相似文献   

8.
Janet R. Hilton 《Planta》1982,155(6):524-528
Seeds ofBromus sterilis L. germinated between 80–100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome  相似文献   

9.
The characteristics of the high-irradiance response (HIR) of plant photomorphogenesis are thought to be the result of the interaction of both the light and dark reactions of phytochrome. Thus any variation in the rates of the dark reactions may be expected to lead to variation in the characteristics of the HIR. We report here substantial differences in the rates of the dark reactions between different seed batches of a single species (Sinapis alba L.), and also between different organs of seedlings from each of the batches of seed. Calculations of phytochrome dynamics from the measured dark-reaction rates show that the behaviour of Pfr under HIR conditions will vary considerably according to seed batch and seedling organ. Much larger differences in dark-reaction rates, and the resulting phytochrome dynamics, were found between 25° and 10° C. These lead to the prediction that the HIR will be much reduced at the lower temperature, and may be absent in some cases.Abbreviations and symbols HIR high-irradiance response - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - Ptot total phytochrome, Pr+Pfr - ss Pfr/Ptot ratio which immediately establishes the phytochrome steady state  相似文献   

10.
Monoclonal antibodies to defined locations on six regions of the phytochrome molecule (from Avena sativa L. or Zea mays L.) were each found to have a different affinity toward the farred-absorbing form of phytochrome (Pfr) and the red-absorbing form (Pr). The differences were small, but were consistently shown by antibodies which bind to the vicinity of the aminoterminus, the carboxylterminus and to sequences in between. It seems that the conformational differences between Pr and Pfr extend over the whole molecule in as far as it is represented by these regions and the antibodies binding to them.Abbreviations Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome  相似文献   

11.
Unilateral irradiation of maize (Zea mays L.) seedlings results in a fluence-rate gradient, and hence below saturation, a gradient of the far-red-absorbing form of phytochrome (Pfr). The Pfr-gradients established by blue, red and far-red light were spectrophotometrically measured in the mesocotyl. Based on these Pfr-gradients and the fluence-response curves of phytochrome photoconversion the fluence-rate gradients were calculated. The fluence-rate gradient in the blue (460 nm) was steeper than that in the red (665 nm), which in turn was steeper than that in the far-red light (725 nm). The fluence-rate ratios front to rear were 1:0.06 (460 nm), 1:0.2 (665 nm), and 1:0.33 (725 nm). The assumption that phytochrome-mediated phototropism of maize mesocotyls is caused by local phytochrome-mediated growth inhibition was tested in the following manner. Firstly, the Pfr response curve for growth inhibition was calculated; these calculations were based on measurements of Pfr-gradients and data from red-light-induced phototropism. Secondly, the Pfr response curve for growth inhibition was used as a basis for calculating fluence-response curves for blue-and far-red-light-induced phototropism. Finally, these calculated results were compared with experimental data. It was concluded that the threshold for phytochrome-mediated phototropism of maize mesocotyls reflects the apparent photoconversion cross section of phytochrome whereas the maximal inducable curvature depends on the steepness of the light (Pfr) gradient across the mesocotyl.Abbreviations Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Fr far-red light  相似文献   

12.
Massanori Takaki  V. M. Zaia 《Planta》1984,160(2):190-192
A short period (15–30 min) at 30° C promotes germination of seeds of Lactuca sativa L. cv. Repolhuda in darkness. Far-red light reverses this stimulation, and the escape curves for phytochrome and high-temperature action are quite similar, indicating that the two factors act at a common point in the chain of events leading to germination. It is suggested that high temperature acts by decreasing the threshold of the active, far-red absorbing, form of phytochrome (Pfr) needed to promote germination.Abbreviations FR far-red light - Pfr far-red-absorbing form of phytochrome - R red light  相似文献   

13.
Proteolytic fragments were obtained by limited proteolysis of 124-kDa (kilodalton) phytochrome from etiolatedAvena sativa using trypsin, endoproteinase-Lys-C, endoproteinase-Glu-C and subtilisin. The fragments were separated by sodium dodecyl sulfate gel electrophoresis, blotted onto activated glass-fiber sheets and investigated by amino-acid sequencing in a gas-phase sequencer. Determination of N-terminal sequences in three to six Edman degradation steps allowed the exact localization of the fragments within the published entire amino-acid sequence of 124-kDaAvena phytochrome (H.P. Hershey, R.F. Barker, K.B. Idler, J.L. Lissemore, P.H. Quail (1985), Nucleic Acids Res.13, 8543–8559). From the knowledge of the exact sites for preferred proteolytic cleavage of undenatured phytochrome, conclusions on the conformation of the phytochrome protein were drawn. Sites of preferred cleavage are considered to be freely exposed to the environment whereas potential cleavage sites which are resistant to proteolysis over a long time are considered to be localized in the interior of the native phytochrome. Two different sites which are exposed in the far-red-absorbing form but not in the red-absorbing form of phytochrome are localized at amino-acid residues 354 and 753, respectively. The N-terminal region which is exposed only in the red-absorbing form stretches only as far as amino-acid residue 60.Abbreviations kDa kilodalton - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis Dedicated to Professor W. Rau on the occasion of his 60th birthday.  相似文献   

14.
Seeds (nutlets) of Rumex obtusifolius L. fail to germinate in darkness at 25° C, but are stimulated by short exposure to red light (R) the effectiveness of which can be negated by a subsequent short exposure to far red light (F) indicating phytochrome control. Short periods of elevated temperature treatment (e.g. 5 min at 35° C) can induce complete germination in darkness. Although short F cannot revert the effect of 35° C treatment, cycling the phytochrome pool by exposure to short R before short F results in reversion of at least 50% of the population. Prolonged or intermittent F can also revert the germination induced by 35° C treatment. The effect of elevated temperature treatment is interpreted on the basis of two possible models; (i) that it increases the sensitivity of the seeds to a low level of pre-existing active form of phytochrome (Pfr) (ii) that it induces the appearance of Pfr in the dark. In both cases it is envisaged that elevated temperature treatment and Pfr control germination at a common point in the series of reactions that lead to germination.Abbreviations D Dark - F far red light - P phytochrome - Pr red absorbing form of P - Pfr far red absorbing form of P - R red light  相似文献   

15.
Characterisation of a new monoclonal antibody (mAb), designated LAS 41, directed against 124-kilodalton (kDa) etiolated-oat (Avena sativa L.) phytochrome, indicates that it recognises an epitope unique to the red-light-absorbing form, Pr. In a solid-phase enzyme-linked immunosorbent assay (ELISA), LAS 41 exhibits a seven- to eight-fold higher affinity for Pr than for the far-red-light-absorbing form of phytochrome, Pfr. In addition, in immunoprecipitation assays LAS 41 effectively precipitates 100% of phytochrome presented as Pr but only precipitates a maximum of 24.5% of phytochrome presented as Pfr. These values are indicative of binding exclusively to Pr. Peptide-mapping studies show that LAS 41 recognises and epitope located within a region 6–10 kDa from the aminoterminus of the phytochrome molecule. Since binding of LAS 41 to Pr induces alterations in the spectral properties of Pr, this indicates that at least part of the 4 kDa domain to which the antibody binds is essential for protein-chromophore interaction. Subsequent photoconversion of LAS 41-Pr complexes produces native Pfr spectra, with concomitant production of free antibody and antigen, as shown by a modified ELISA. The specificity of LAS 41 for Pr has facilitated the purification of Pfr which is free of contaminating Pr. This has enabled direct determination of the mole fraction of Pfr established by red light to be 0.874.Abbreviations ELISA enzyme-linked immunsorbent assay - kDa kilodalton - mAb monoclonal antibody - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - (A) difference in absorbance (A 665 Pr –A 730 Pr )-(A 665 Pfr –A 730 Pfr ) - Ar/Afr spectral change ratio (SCR) - max mole fraction of Pfr following saturating red light  相似文献   

16.
Alan M. Jones  Peter H. Quail 《Planta》1989,178(2):147-156
We have undertaken a study of the structure of the amino-terminal domain of the phytochrome polypeptide purified from Avena sativa L. Amino-acid sequencing was used to indentify arginine 52 as the precise location of a conformation-specific cleavage of phytochrome by subtilisin. The location of the epitopes for a class of monoclonal antibodies designated type 2 has been shown to be located between approx. 10 and 20 kilodaltons (kDa) from the amino terminus. These two new spatial markers, in addition to the chromophore and another epitope recognized by type 1 monoclonal antibodies and located within 6 kDa from the amino terminus, have been used to map the locations of several new protease-accessible sites along the polypeptide. After extensive digestion of phytochrome with subtilisin, a stable spectrally-active group of peptides remains. Within this group is a 16-kDa chromopeptide which, either alone or as part of an assemblage of peptides, elutes from a size-exclusion column under nondenaturing conditions at a volume consistent with a molecular mass of 35–40 kDa. This group of peptides has an absorbance spectrum similar to the red-absorbing form of phytochrome (Pr) and is red/far-red photoreversible between this and a photobleached form. These data indicate that this group of peptides still retains the principal structural requisites for Pr-chromophore-protein interactions and for photoreversibility, but not for Pfr (far-red-absorbing phytochrome)-chromophore-protein interactions. It is uncertain if these structural requisites reside exclusively on the 16-kDa chromopeptide or result from an assemblage of these peptides. However, we have excluded any role for an adjacent 14-kDa fragment (approximately residues 50 to 200) in the observed spectral properties since it can be selectively removed without any effect on the photoreversibility.Abbreviations Da dalton - Mr relative molecular mass - Pr, Pfr red and far-red-absorbing forms of phytochrome, respectively - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis This work was presented, in part, at the XVI Yamada Conference on Phytochrome and Plant Photomorphogenesis, Okazaki, Japan, October 1986  相似文献   

17.
The kinetics of type 1 phytochrome were investigated in green, light-grown wheat. Phytochrome was measured by a quantitative sandwich enzyme-linked immunosorbent assay using monoclonal antibodies. The assay was capable of detecting down to 150 pg of phytochrome. In red light, rapid first-order destruction of the far-red-light-absorbing form of phytochrome (Pfr) with a half-life of 15 min was observed. Following white light terminated by red, phytochrome synthesis was delayed in darkness by about 15 h compared to plants given a terminal far-red treatment. Synthesis of the red-light-absorbing form of phytochrome (Pr) was zero-order in these experiments. Phytochrome synthesis in far-red light was approximately equal to synthesis in darkness in wheat although net destruction occurred in light-grown Avena sativa tissues in continuous far-red light, as has been reported for other monocotyledons. In wheat, destruction of Pfr apparently did not occur below a certain threshold level of Pfr or Pfr/total phytochrome. These results are consistent with an involvement of type 1 phytochrome in the photoperiodic control of flowering in wheat and other long-day plants.Abbreviations ELISA enzyme-linked immunosorbent assay - FR far-red light - HIR high-irradiance response - Pfr farred-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - Ptot total phytochrome (Pr + Pfr) - R red light The authors wish to thank Prof. Daphne Vince-Prue (University of Reading) for many helpful discussions regarding this work. Hugh Carr-Smith was supported by a Science and Engineering Research Council studentship and Chris Plumpton by an Agricultural and Food Research Council (AFRC) studentship. B. Thomas and G. Butcher were supported by the AFRC.  相似文献   

18.
Summary A brief irradiation with red light of pea (Pisum sativum L.) shoot segments kept at 0° resulted in very rapid binding of both Pr and Pfr to mitochondrial and microsomal fractions. The effect was not far-red reversible. The amount of phytochrome bound to the mitochondrial fraction was proportional to the percentage of Pfr of the fraction, and the ratio of Pr and Pfr in the bound form was the same as that in 12,000 x g supernatant. After a brief exposure of the segments to red light at 0° and a subsequent dark incubation at 30° in Tris-HCL buffer containing dithiothreitol or EDTA, which bot inhibit Pfr decay, the contents of phytochrome in the mitochondrial and microsomal fractions were significantly enhanced with time. The red-light effect was reversed by far-red light. The increase of the phytochrome content in the particulate fractions continued for at least 2 h, reaching a ca. 3 times higher level in terms of (A) per mg protein.Abbreviations R red - FR far-red - Pr red-absorbing form of phytochrome - Pfr far-red-absorbing form of phytochrome  相似文献   

19.
The red-light(R)-absorbing form of phytochrome (Pr) was detected spectrophotometrically in a 20,000 g particulate fraction prepared from a 1,000 g supernatant fraction from epicotyl tissue of pea (Pisum sativum L.) seedlings grown in the dark and only briefly exposed to dim green light. The difference spectrum of phytochrome in this fraction was essentially the same as that of soluble phytochrome from the same tissue. When the non-irradiated 20,000 g particulate fraction was incubated in the dark at 25° C, an absorbance change (decrease) of Pr after actinic red irradiation was found only in the far-red (FR) region. When the 20,000 g particulate fraction was irradiated with R and then incubated in the dark, the FR-absorbing form of phytochrome (Pfr) disappeared spectrally at a rate about half that in the soluble fraction, and the difference spectrum of the Pr which became detectable after dark incubation of the 20,000 g particulate fraction was markedly distorted. In contrast, Pfr in a 20,000 g particulate fraction prepared from tissues irradiated with R did not change optically during dark incubation at 25° C for 60 min, while Pfr in the soluble fraction from the same tissue disappeared in the dark. No dissociation of either Pr or Pfr from the 20,000 g particulate fraction was indicated during a 60-min dark incubation at 25° C, but Pfr in a 20,000 g particulate fraction prepared in vitro from R-irradiated 1,000 g supernatant fraction in the presence of CaCl2 disappeared spectrally and the difference spectrum of Pr in the 20,000 g particulate fraction became quite distorted during the dark incubation.Abbreviations Pr red-light-absorbing form of phytochrome - Pfr far-red-light-absorbing form of phytochrome - FR far-red light - FR1 first actinic far-red light - FR2 second actinic far-red light - R red light - R1 first actinic red light - 1kS 1,000 g supernatant fraction - 20kS 20,000 g supernatant fraction - 20kP 20,000 g particulate fraction  相似文献   

20.
The low chlorophyll content of cotyledons of Pharbitis nil grown for 24 h in far-red light (FR) or at 18° C in white light from fluorescent lamps (WL) allows spectrophotometric measurement of phytochrome in these tissues. The (A) measurements utilize measuring beams at 730/802 nm and an actinic irradiation in excess of 90 s. The constancy of the relationship between phytochrome content and sample thickness confirms that, under these conditions of measurement, a true maximum phytochrome signal was obtained. These techniques have been used to follow changes in the form and amount of phytochrome during an inductive dark period for flowering. Following exposure to 24h WL at 18° C with a terminal 10 min red (R), Pfr was lost rapidly in darkness and approached zero in less than 1 h; during this period there was no change in the total phytochrome signal. Following exposure to 24 h FR with a terminal 10 min R, Pfr approached zero in 3 h, and the total phytochrome signal decreased by about half. The relevance of these changes to photoperiodic time measurement is discussed.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号