首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to elucidate the genetic basis of autosomal dominant retinitis pigmentosa (adRP) in a large eight-generation family (UCLA-RP09) of British descent, we assessed linkage between the UCLA-RP09 adRP gene and numerous genetic loci, including eight adRP candidate genes, five anonymous adRP-linked DNA loci, and 20 phenotypic markers. Linkage to the UCLA-RP09 disease gene was excluded for all eight candidate genes analyzed, including rhodopsin (RP4) and peripherin/RDS (RP7), for the four adRP loci RP1, RP9, RP10 and RP11, as well as for 17 phenotypic markers. The anonymous DNA marker locus D17S938, linked to adRP locus RP13 on chromosome 17p13.1, yielded a suggestive but not statistically significant positive lod score. Linkage was confirmed between the UCLA-RP09 adRP gene and markers distal to D17S938 in the chromosomal region 17p13.3. A reanalysis of the original RP13 data from a South African adRP family of British descent, in conjunction with our UCLA-RP09 data, suggests that only one adRP locus exists on 17p but that it maps to a more telomeric position, at band 17p13.3, than previously reported. Confirmation of the involvement of RP13 in two presumably unrelated adRP families, both of British descent, suggests that this locus is a distinct adRP gene in a proportion of British, and possibly other, adRP families.  相似文献   

2.
We recently reported the localization of a gene for late-onset autosomal dominant retinitis pigmentosa (adRP; RP6), on the short arm of chromosome 6, by linkage analysis in a large family of Irish origin. It is notable that the gene encoding peripherin-RDS, a photoreceptor-specific protein, recently has been physically mapped on 6p. In our own analysis, an intrageneic marker derived from this gene cosegregated with the adRP disease locus with zero recombination (lod score 5.46 at q = .00). Using the CEPH reference panel, we now report the mapping of the peripherin-RDS gene relative to other 6p markers in the CEPH data base. Incorporation of these data into a multipoint analysis produced a lod score for adRP of 8.21, maximizing at the peripherin-RDS locus. This study provides strong evidence suggesting a role for peripherin-RDS in the etiology of one form of adRP.  相似文献   

3.
"Autosomal dominant retinitis pigmentosa" (adRP) refers to a genetically heterogeneous group of retinal dystrophies, in which 54% of all cases can be attributed to 17 disease loci. Here, we describe the localization and identification of the photoreceptor cell-specific nuclear receptor gene NR2E3 as a novel disease locus and gene for adRP. A heterozygous mutation c.166G-->A (p.Gly56Arg) was identified in the first zinc finger of NR2E3 in a large Belgian family affected with adRP. Overall, this missense mutation was found in 3 families affected with adRP among 87 unrelated families with potentially dominant retinal dystrophies (3.4%), of which 47 were affected with RP (6.4%). Interestingly, affected members of these families display a novel recognizable NR2E3-related clinical subtype of adRP. Other mutations of NR2E3 have previously been shown to cause autosomal recessive enhanced S-cone syndrome, a specific retinal phenotype. We propose a different pathogenetic mechanism for these distinct dominant and recessive phenotypes, which may be attributed to the dual key role of NR2E3 in the regulation of photoreceptor-specific genes during rod development and maintenance.  相似文献   

4.
The locus (RP1) for one form of autosomal dominant retinitis pigmentosa (adRP) was mapped on chromosome 8q11-q22 between D8S589 and D8S285, which are about 8 cM apart, by linkage analysis in an extended family ascertained in the USA. We have studied a multigeneration Australian family with adRP and found close linkage without recombination between the disease locus and D8S591, D8S566, and D8S166 (Zmax = 1.137– 4.650 at θ = 0.00), all mapped in the region known to harbor RP1. Assuming that the mutation of the same gene is responsible for the disease in both families, the analysis of multiply informative meioses in the American and Australian families places the adRP locus between D8S601 and D8S285, which reduces the critical region to about 4 cM, corresponding to approximately 4 Mb, which is completely covered by a yeast artificial chromosome contig assembled recently. Received: 23 April 1996 / Accepted: 3 July 1996  相似文献   

5.
The present paper reports on the fine mapping of the ACTN2 gene and on the reconstruction of its genomic structure. By radiation hybrid mapping, the gene was located about 912 cR from the 1p-telomere. ACTN2 was placed between the marker WI-9317 (alias D1S2421) and the marker AFMA045ZC5, within the chromosomal band 1q43. The gene was detected in YAC 955 c 12. This YAC was used as template DNA for long-distance and Alu-PCR, using a set of putative exonic primers, designed on the cDNA sequence of alpha-actinin-2, in order to characterize the ACTN2 intron-exon boundaries. The entire genomic structure of the gene was reconstructed. The ACTN2 gene contained 21 exons, in a segment spanning about 40 kb of genomic DNA. Only the proximal part of the gene shows a high conservation through evolution, whereas in the remaining part a divergence from the genomic organization of C. elegans and D. melanogaster was noticed. A series of intronic primers was specifically designed and produced, to amplify all the exons of ACTN2, directly from genomic DNA. This will enable mutation screening in patients affected with hereditary diseases linked to the marker CA4F/R, a polymorphism in the last intron of the alpha-actinin-2 gene.  相似文献   

6.
7.
Autosomal dominant retinitis pigmentosa (adRP) has shown linkage to the chromosome 3q marker C17 (D3S47) in two large adRP pedigrees known as TCDM1 and adRP3. On the basis of this evidence the rhodopsin gene, which also maps to 3q, was screened for mutations which segregated with the disease in adRP patients, and several have now been identified. However, we report that, as yet, no rhodopsin mutation has been found in the families first linked to C17. Since no highly informative marker system is available in the rhodopsin gene, it has not been possible to measure the genetic distance between rhodopsin and D3S47 accurately. We now present a linkage analysis between D3S47 and the rhodopsin locus (RHO) in five proven rhodopsin-retinitis pigmentosa (rhodopsin-RP) families, using the causative mutations as highly informative polymorphic markers. The distance, between RHO and D3S47, obtained by this analysis is theta = .12, with a lod score of 4.5. This contrast with peak lod scores between D3S47 and adRP of 6.1 at theta = .05 and 16.5 at theta = 0 in families adRP3 and TCDM1, respectively. These data would be consistent with the hypothesis that TCDM1 and ADRP3 represent a second adRP locus on chromosome 3q, closer to D3S47 than is the rhodopsin locus. This result shows that care must be taken when interpreting adRP exclusion data generated with probe C17 and that it is probably not a suitable marker for predictive genetic testing in all chromosome 3q-linked adRP families.  相似文献   

8.
Several point mutations within exons 16 and 17 of the amyloid precursor protein (APP) gene have been reported that are associated with Alzheimer's disease in a small number of familial cases. To determine the size of the APP gene and the organization of the exons within human genomic DNA, we have characterized 11 Yeast Artificial Chromosome (YAC), recombinants containing human APP gene sequences. The smallest YAC insert was 125 kb, and the largest was 1.4 Mb. The YACs were screened by polymerase chain reaction amplification of APP exons to determine which of the 18 exons coding for APP770 were present. Four of the YACs (D110G1, D110G6, D110E9, and B142F9) contain all 18 exons and at least part of the promoter. Construction of an overlapping map of the gene with all of the YACs demonstrated that 3 of the 11 YACs were chimeric. The orientation and position of the coding sequence on the map was determined by probing digests of the YAC DNA with exon PCR products and the vector arms. The coding region of the APP gene spans approximately 400 kb of genomic DNA.  相似文献   

9.
10.
Retinitis pigmentosa (RP) is the name given to a heterogeneous group of retinal degenerations mapping to at least 16 loci. The autosomal dominant form (ARP), accounting for approximately 25% of cases, can be caused by mutations in two genes, rhodopsin and peripherin/RDS, and by at least six other loci identified by linkage analysis. The RP11 locus for adRP has previously been mapped to chromosome 19q13.4 in a large English family. This linkage has been independently confirmed in a Japanese family, and we now report three additional unrelated linked U.K. families, suggesting that this is a major locus for RP. Linkage analysis in the U.K. families refines the RP11 interval to 5 cM between markers D19S180 and AFMc001yb1. All linked families exhibit incomplete penetrance; some obligate gene carriers remain asymptomatic throughout their lives, whereas symptomatic individuals experience night blindness and visual field loss in their teens and are generally registered as blind by their 30s. This "bimodal expressivity" contrasts with the variable-expressivity RP mapping to chromosome 7p (RP9) in another family, which has implications for diagnosis and counseling of RP11 families. These results may also imply that a proportion of sporadic RP, previously assumed to be recessive, might result from mutations at this locus.  相似文献   

11.
This group has previously reported the mapping of a novel locus for autosomal dominant retinitis pigmentosa (adRP) in a South African kindred to 17q. Using a new series of microsatellite markers in this study, two-point and multipoint analysis provide evidence for the localization of the disease gene to the 17q22 region. In addition, a second South African adRP family is shown to be linked to this 17q22 locus. Disease-associated haplotypes constructed for both families and multipoint linkage analysis place the gene in the 10-cM interval between D17S1607 and D17S1874. Three candidate genes on 17q were investigated: PDEG, the gamma subunit of rod phosphodiesterase; TIMP2, tissue inhibitor of metalloproteinases-2; and PRKCA, protein kinase C alpha. Recombination events between the adRP locus and: (1) a single-stranded conformation polymorphism in PDEG; and (2) a restriction fragment length polymorphism in TIMP2 provided evidence for the exclusion of these candidate genes as being responsible for adRP in the South African kindred. Received: 6 December 1996 / Accepted: 19 July 1997  相似文献   

12.
13.
We have constructed a long-range contig of cosmid and YAC clones around D10S102, a locus that is tightly linked to the gene responsible for multiple endocrine neoplasia type 2A (MEN2A). With D10S102 as a starting point, a 360-kb cosmid contig was constructed by bidirectional genomic walking, and at least six fragments from these cosmids showed high sequence homology to other species. Five YAC clones were also isolated at the D10S102 locus, and they formed a contig covering 950 kb of genomic DNA. Furthermore, we obtained six RFLP systems from the contig, which will serve as new resources for fine-scale genetic linkage mapping of the MEN2A locus.  相似文献   

14.
We report mutations in the gene for topoisomerase I-binding RS protein (TOPORS) in patients with autosomal dominant retinitis pigmentosa (adRP) linked to chromosome 9p21.1 (locus RP31). A positional-cloning approach, together with the use of bioinformatics, identified TOPORS (comprising three exons and encoding a protein of 1,045 aa) as the gene responsible for adRP. Mutations that include an insertion and a deletion have been identified in two adRP-affected families--one French Canadian and one German family, respectively. Interestingly, a distinct phenotype is noted at the earlier stages of the disease, with an unusual perivascular cuff of retinal pigment epithelium atrophy, which was found surrounding the superior and inferior arcades in the retina. TOPORS is a RING domain-containing E3 ubiquitin ligase and localizes in the nucleus in speckled loci that are associated with promyelocytic leukemia bodies. The ubiquitous nature of TOPORS expression and a lack of mutant protein in patients are highly suggestive of haploinsufficiency, rather than a dominant negative effect, as the molecular mechanism of the disease and make rescue of the clinical phenotype amenable to somatic gene therapy.  相似文献   

15.
Genomic structure of the human PLZF gene.   总被引:1,自引:0,他引:1  
The human PLZF (promyelocytic leukaemia zinc finger) gene encodes a Krüppel-like zinc finger protein, which was identified via the reciprocal translocation t(11;17)(q23;q21) fusing it to the retinoic acid receptor alpha (RARalpha) gene in promyelocytic leukaemia. To determine its complete genomic organisation, we constructed a cosmid-map fully containing the hPLZF gene. The gene has seven exons, including a novel 5' untranslated exon, varying in size from 87 to 1358bp and spans at least 120kb. Flanking intronic sequences were identified and all splice acceptor and donor sites conformed to the gt/ag rule. Five polymorphic markers could be fine located in its vicinity. These data will facilitate mutation analysis of hPLZF in t(11;17) leukaemia cases, as well as assist mapping and loss-of-heterozygosity analysis. Here we have tested hPLZF as a possible candidate for the PGL1 locus involved in hereditary head and neck paragangliomas. However, mutation analysis revealed no aberration in 12 paraganglioma patients from different families.  相似文献   

16.
The X-linked form of retinitis pigmentosa (XLRP) is a severe disease of the retina, characterised by night blindness and visual field constriction in a degenerative process, culminating with complete loss of sight within the third decade of life. Genetic mapping studies have identified two major loci for XLRP: RP3 (70%–75% of XLRP) and RP2 (20%–25% of XLRP). The RPGR (retinitis pigmentosa GTPase regulator) gene has been cloned within the RP3 genomic interval and it has been shown that 10%–20% of XLRP families have mutations in this gene. Here, we describe a single-strand conformational polymorphism-based mutation screening of RPGR in a pool of 29 XLRP families for which the disease segregates with the RP3 locus, in order to investigate the proportion of RP3 families with RPGR mutations and to relate the results to previous reports. Five different new mutations have been identified: two splice site mutations for exon 1 and three frameshift mutations in exons 7, 10 and 11. The percentage of RPGR mutations identified is 17% (5/29) in our genetically well-defined population. This figure is comparable to the percentage of RP2 gene mutations that we have detected in our entire XLRP patient pool (10%–15%). A correlation of RPGR mutations with phenotype in the families described in this study and the biochemical characterisation of reported mutations may provide insights into the function of the protein. Electronic Publication  相似文献   

17.
We previously described the construction and characterization of aChlamydomonasgenomic library in yeast artificial chromosomes (YACs). Here we describe the isolation and genetic mapping of YACs at the FLA10 locus on theunichromosome as well as isolation of a YAC spanning the PF14 locus on chromosome VI. Genetic mapping of YAC end clones by RFLP analyses in interspecific crosses reveals that YACs with a physical size of 150 kb commonly span genetic intervals defined by one or two recombination events in crosses of approximately 20 tetrads. This promises to make chromosomal walking inChlamydomonasa relatively efficient enterprise. We also describe our development of a method for direct complementation of mutant genes by transformation with amplified wildtype YAC DNA. The use of positional cloning using YACs and this direct functional assay for the presence of a gene in a YAC represent powerful molecular genetic tools enabling the cloning of most anyChlamydomonasgene.  相似文献   

18.
Lithuanian patients with visual problems were clinically examined for retinitis pigmentosa (RP). A total of 33 unrelated families with autosomal dominant RP (adRP) were identified. Screening for mutations in the rhodopsin (RHO) and peripherin/RDS (RDS) genes was performed using DNA heteroduplex analysis. Direct DNA sequencing in the cases of heteroduplex formation showed the presence of the following mutations and polymorphisms in 14 adRP patients: RHO gene - Lys248Arg (1 case), and Pro347Leu (2 cases); RDS gene - Glu304Gln (12 cases), Lys310Arg (5 cases), and Gly338Asp (12 cases). The presence of these mutations (except Lys248Arg in the RHO gene) was confirmed by relevant restriction enzyme digestion. The frequency of the RDS gene mutations Glu304Gln and Gly338Asp was estimated to be 36.4%, while mutation Lys310Arg was less frequent (15.2%). These 3 RDS gene mutations appear to be polypeptide polymorphisms not related to adRP.  相似文献   

19.
The last Crypto-Jews (Marranos) are the survivors of Spanish Jews who were persecuted in the late fifteenth century, escaped to Portugal and were forced to convert to save their lives. Isolated groups still exist in mountainous areas such as Belmonte in the Beira-Baixa province of Portugal. We report here the genetic study of a highly consanguineous endogamic population of Crypto-Jews of Belmonte affected with autosomal recessive retinitis pigmentosa (RP). A genome-wide search for homozygosity allowed us to localize the disease gene to chromosome 15q22-q24 (Zmax=2.95 at theta=0 at the D15S131 locus). Interestingly, the photoreceptor cell-specific nuclear receptor (PNR) gene, the expression of which is restricted to the outer nuclear layer of retinal photoreceptor cells, was found to map to the YAC contig encompassing the disease locus. A search for mutations allowed us to ascribe the RP of Crypto-Jews of Belmonte to a homozygous missense mutation in the PNR gene. Preliminary haplotype studies support the view that this mutation is relatively ancient but probably occurred after the population settled in Belmonte.  相似文献   

20.
A map-based cloning technique for crop plants is being developed using tomato as a model system. The target gene jointless is a recessive mutation that completely suppresses the formation of flower and fruit pedicel abscission zones. Previously, the jointless locus was mapped to a 3 cM interval between the two molecular markers TG523 and RPD158. Physical mapping of the jointless region by pulsed-field gel electrophoresis demonstrated that TG523 and RPD158 reside on a 600 kb SmaI fragment. In this study, TG523 was used as a probe to screen a tomato yeast artificial chromosome (YAC) library. Six tomato YAC (TY) clones were isolated, ranging from 220 to 380 kb in size. Genetic mapping of YAC ends demonstrated that this set of overlapping YACs encompasses the jointless locus. Two YAC ends, TY159L (L indicates left end) and TY143R (R indicates right end), cosegregate with the jointless locus. Only one of the six YACs (TY142) contained single-copy DNA sequences at both ends that could be mapped. The two ends of TY142 were mapped to either side of the jointless locus, indicating that TY142 contains a contiguous 285 kb tomato DNA fragment that probably includes the jointless locus. Physical mapping of the TY142 clone revealed that TY159L and TY143R reside on a 55 kb SalI fragment. Southern blot hybridization analysis of the DNAs of tomato lines nearly isogenic for the jointless mutation has allowed localization of the target locus to a region of less than 50 kb within the TY142 clone.Communicated by H. Saedler  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号