首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human uterine endometrium is a tissue in which cell proliferation and differentiation are strictly controlled by sex steroid hormones, and these hormone-controlled cellular events occurring in association with the menstrual cycle of the uterine endometrium should be accompanied by characteristic molecular and metabolic changes. To characterize the menstrual cycle at the molecular level, we analyzed the glycolipids of human uterine endometrium in the proliferative and secretory phases of the menstrual cycle. Neutral glycosphingolipids from uterine endometrium comprised globo-series glycosphingolipids, such as GlcCer, LacCer, Gb3Cer, and Gb4Cer, and the relative concentrations remained constant in the two phases. However, in the case of acidic glycosphingolipids, although the concentrations of sialoglycosphingolipids remained at constant levels in the two phases, sulfatide, I3-SulfoGalCer, dramatically increased from the proliferative to the secretory phase, amounting to 7-17 nmol/g dry weight in the proliferative phase and 115-245 nmol/g dry weight in the secretory phase. Since sulfatide was the only glycolipid that changed in association with the menstrual cycle, it is likely that the sulfotransferase responsible for the synthesis of sulfatide might be induced by sex steroid hormones, estrogen and progesterone, and that sulfatide might play an essential biological role in the secretory phase of the menstrual cycle in the uterine endometrium.  相似文献   

2.
In human cervical epithelium, uterine endometrium, and mucosa of the fallopian tubes, neutral glycosphingolipids were exclusively represented by the globo-series glycosphingolipids, such as CMH, LacCer, Gb3Cer and Gb4Cer, but the molecular species of their ceramide moieties were characteristically altered in the cervical epithelium and uterine endometrium during the menstrual cycle. Individual neutral glycosphingolipids in the cervical epithelium and the uterine endometrium at the follicular phase gave two bands on TLC, whereas those at the luteal phase displayed three bands, the third being the lower migrating one. Neutral glycosphingolipids migrating to the same positions as these lower-migrating bands were constantly detected in the mucosa of the fallopian tubes, independent of the menstrual cycle. The lower-migrating bands for the cervical epithelium and the uterine endometrium at the luteal phase were due to molecules mainly constructed of phytosphingosine with alpha-hydroxy fatty acids having chain lengths of 18-24 and 4-sphingenine with alpha-hydroxy fatty acids having chain lengths of 16-22, whereas those in the mucosa of the fallopian tubes were exclusively N-alpha-hydroxypalmitoyl 4-sphingenine.  相似文献   

3.
To test whether neutral glycosphingolipids can serve as anticoagulant cofactors, the effects of incorporation of neutral glycosphingolipids into phospholipid vesicles on anticoagulant and procoagulant reactions were studied. Glucosylceramide (GlcCer), lactosylceramide (LacCer), and globotriaosylceramide (Gb(3)Cer) in vesicles containing phosphatidylserine (PS) and phosphatidylcholine (PC) dose dependently enhanced factor Va inactivation by the anticoagulant factors, activated protein C (APC) and protein S. Addition of GlcCer to PC/PS vesicles enhanced protein S-dependent APC cleavage in factor Va at Arg-506 by 13-fold, whereas PC/PS vesicles alone minimally affected protein S enhancement of this reaction. Incorporation into PC/PS vesicles of GlcCer, LacCer, or Gb(3)Cer, but not galactosylceramide or globotetraosylceramide, dose dependently prolonged factor Xa-1-stage clotting times of normal plasma in the presence of added APC without affecting baseline clotting times in the absence of APC, showing that certain neutral glycosphingolipids enhance anticoagulant but not procoagulant reactions in plasma. Thus, certain neutral glycosphingolipids (e.g. GlcCer, LacCer, and Gb(3)Cer) can enhance anticoagulant activity of APC/protein S by mechanisms that are distinctly different from those of phospholipids alone. We speculate that under some circumstances certain neutral glycosphingolipids either in lipoprotein particles or in cell membranes may help form antithrombotic microdomains that might enhance down-regulation of thrombin by APC in vivo.  相似文献   

4.
1. Six neutral GSL fractions were purified from porcine erythrocyte membranes. 2. They were identified to be LacCer (14% of total neutral GSLs), 2-hydroxy acid-rich and -poor Gb3Cer (3 and 7%, respectively) and Gb4Cer (71%) by means of NMR spectrometry. 3. Monohexosylceramides (5%) were composed of GlcCer and GalCer with near amount. 4. All these GSL classes contained a high concentration (more than 20% of total acids in each class) of 2-hydroxy fatty acids. 5. GalCer and GlcCer contained considerable amounts of C16- and C18-acids, and of C18-phytosphingosine, whereas C24-acids and C18-sphingosine were predominant in the other GSLs. 6. A minor GSL fraction (less than 1% of total neutral GSLs) which migrated more slowly than Gb5Cer on a thin layer plate and composed of several GSL components contained L-fucose.  相似文献   

5.
A micro method involving high-performance liquid chromatography-fast atom bombardment mass spectrometry (HPLC/FAB/MS) has been developed for the sensitive structural characterization of neutral glycosphingolipids and monosialogangliosides. The method involves a micro silica gel column (0.3 mm i.d. x 100 mm) and a micro HPLC apparatus working at a flow rate of 6 microliters/min. All injected materials can be structurally characterized by mass spectrometry without the splitting or wasting of materials, which was not possible with our previous method [M. Suzuki et al. (1990) J. Biochem. 108, 92-98]. A mixture containing 160 ng each of five neutral glycosphingolipids (GlcCer, LacCer, Gb3Cer, Gb4Cer, and IV3 alpha GalNAc-Gb4Cer) and a mixture containing 160 ng each of three monosialogangliosides [GM3(NeuAc), GM2(NeuAc), and GM1(NeuAc)] were injected into the micro HPLC with programmed elution with isopropanol-n-hexane-water with or without ammonium hydroxide. Each glycosphingolipid was separated by mass chromatography and the obtained mass spectra were suitable for structural characterization. Thus, the characterization of glycosphingolipids was achieved with small amounts of materials, 160 ng each, and in mixtures.  相似文献   

6.
Glycosphingolipids were isolated from a canine kidney cell line (MDCK) and its ouabain-resistant mutant (MDCK-OR) by solvent extraction, mild alkaline methanolysis, a DEAE-Sephadex column, and preparative TLC. The glycolipids were characterized by their mobilities on TLC, an analysis of carbohydrates as trimethylsilyl methyl glycosides and acetates of partially methylated alditols, as well as by treatment with specific glycosidases. In the neutral glycolipid fraction of both cell lines, galactosylceramide (GalCer), glucosylceramide (GlcCer), lactosylceramide (LacCer), digalactosylceramide (Ga2Cer), globotriaosylceramide (Gb3Cer), globoside (Gb4Cer), and the Forssman antigen (IV3GalNAc alpha-Gb4Cer) were identified. The contents of Ga2Cer (4.4 nmol/mg protein), Gb3Cer (0.6), Gb4Cer (2.9), and IV3GalNac alpha-Gb4Cer (19.5) in MDCK-OR were 1.4- to 2.1-fold higher than those in MDCK, while the concentrations of GlcCer (5.3) and LacCer (1.4) in MDCK-OR were about half of those in MDCK. Among acidic glycolipids of MDCK-OR, galactosyl sulfatide (GalCer-I3-sulfate) and lactosyl sulfatide (LacCer-II3-sulfate) were increased to 1.9 (2.7-fold) and 0.2 nmol/mg protein (2.0-fold), respectively, as compared to MDCK. However, N-acetylneuraminosyllactosylceramide (GM3), the predominant ganglioside in both cell lines, was decreased to about one third of the level (1.5 nmol/mg protein) in the parent MDCK (4.7 nmol/mg protein). The fatty acid of the glycolipids in both cell lines consisted mainly of saturated acids of 16, 18, 22, and 24 carbons.  相似文献   

7.
Neutral glycosphingolipids of murine T-lymphoma EL-4 were studied. The major glycolipid components were identified as GlcCer, LacCer, GgOse3Cer and GgOse4Cer. It has been shown for the first time that not only gangliosides but also neutral glycolipids are shed from the cell surface into the outer medium.  相似文献   

8.
The high performance liquid chromatography separation of the perbenzoyl derivatives of the neutral glycosphingolipids (GlcCer, LacCer, GbOse3Cer, GbOse4Cer, and GgOse3Cer) and the p-bromophenacyl and 2,4-dinitrophenyl hydrazide derivatives of the gangliosides (GM4, GM3, GM2, GM1, GD1a) into individual molecular species on a C18 reversed-phase column is described. Peaks were identified by comparing their relative retention times to the relative retention time of the corresponding glycosphingolipid of known molecular species composition. As little as 5 to 10 pmol of each molecular species of neutral glycosphingolipids and 3 to 5 pmol of the gangliosides can be detected. The effects of changes in the proportion of acetonitrile, methanol, and water in the mobile phase and of column temperature on the molecular species separation are described. A procedure for the tentative identification of glycosphingolipid molecular species based on their relative retention times is presented.  相似文献   

9.
We previously reported a method of high-performance liquid chromatography-fast atom bombardment mass spectrometry (HPLC/FAB/MS) for the structural characterization of molecular species of GlcCer and IV3 beta Gal-Gb4Cer [M. Suzuki et al. (1989) J. Biochem. 105, 829-833]. In this paper, we report a modification of this HPLC/FAB/MS method, which was used for the separation and characterization of neutral glycosphingolipids (GlcCer, LacCer, Gb3Cer, Gb4Cer, and IV3 alpha GalNAc-Gb4Cer) and monosialogangliosides [GM3(NeuAc or NeuGc), GM2 (NeuAc or NeuGc), and GM1 (NeuAc or NeuGc)]. Mixtures of the purified neutral glycolipids and monosialogangliosides were subjected to HPLC on a silica gel column, with programmed elution with isopropanol-n-hexane-water, with or without ammonium hydroxide. In order to obtain mass spectra and mass chromatograms of individual components, effluent from the HPLC column was mixed with a methanol solution of triethanolamine, which was used as the matrix for the FAB ionization, and one-thirtieth of the effluent mixture was introduced into a mass spectrometer through a frit interface. A mixture of the five neutral glycolipids, 5 micrograms of each, gave five peaks on a mass chromatogram obtained by monitoring of the corresponding major pseudo-molecular ions. A mixture of the six monosialogangliosides, 5 micrograms of each, gave six peaks on a mass chromatogram obtained by monitoring of the major pseudo-molecular ions, indicating that GM3, GM2, and GM1 were clearly separated, and that separation due to differences in sialic acid species was also achieved. In the mass spectra of the neutral glycolipids and monosialogangliosides, pseudo-molecular ions and fragment ions due to the elimination of sugar moieties were clearly detected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Glucosylceramide (GlcCer) is synthesized at the cytosolic surface of the Golgi complex while enzymes acting in late steps of glycosphingolipid biosynthesis have their active centers in the Golgi lumen. However, the topology of the "early" galactose-transferring enzymes is largely unknown. We used short-chain ceramides with either an 2-hydroxy fatty acid (HFA) or a normal fatty acid (NFA) to determine the topology of the galactosyltransferases involved in the formation of HFA- and NFA-galactosylceramide (GalCer), lactosylceramide (LacCer), and galabiosylceramide (Ga2Cer). Although the HFA-GalCer synthesizing activity colocalized with an ER marker, the other enzyme activities fractionated at the Golgi density of a sucrose gradient. In cell homogenates and permeabilized cells, newly synthesized short-chain GlcCer and GalCer were accessible to serum albumin, whereas LacCer and Ga2Cer were protected. From this and from the results obtained after protease treatment, and after interfering with UDP-Gal import into the Golgi, we conclude that (a) GlcCer and NFA-GalCer are synthesized in the cytosolic leaflet, while LacCer and Ga2Cer are synthesized in the lumenal leaflet of the Golgi. (b) HFA-GalCer is synthesized in the lumenal leaflet of the ER, but has rapid access to the cytosolic leaflet. (c) GlcCer, NFA-GalCer, and HFA-GalCer translocate from the cytosolic to the lumenal leaflet of the Golgi membrane. The transbilayer movement of GlcCer and NFA-GalCer in the Golgi complex is an absolute requirement for higher glycosphingolipid biosynthesis and for the cell surface expression of these monohexosyl sphingolipids.  相似文献   

11.
Four types of neutral glycosphingolipids (LacCer, Gb3Cer, Gb4Cer, and IV3αGalNAc-Gb4Cer; 10 pmol each) were analyzed using high-performance liquid chromatography (HPLC)-electrospray ionization quadrupole ion trap time-of-flight (ESI-QIT-TOF) mass spectrometry (MS) with a repeated high-speed polarity and MSn switching system. This system can provide six types of mass spectra, including positive and negative ion MS, MS2, and MS3 spectra, within 1 s per cycle. Using HPLC with a normal-phase column, information on the molecular weights of major molecular species of four neutral glycosphingolipids was obtained by detecting [M+Na]+ in the positive ion mode mass spectra and [M?H]? in the negative ion mode mass spectra. Sequences of glycosphingolipid oligosaccharide were obtained in the negative ion MS2 spectra. In addition, information on the ceramide structures was clearly obtained in the negative ion MS3 mass spectra. GlcCer molecular species were analyzed by HPLC-ESI-QIT-TOF MS with a reversed-phase column using 1 pmole of GlcCer. The structures of the seven molecular species of GlcCer, namely, d18:1-C16:0, d18:1-C18:0, d18:1-C20:0, d18:1-C22:0, d18:1-C23:0, d18:1-C24:1, and d18:1-C24:0, were characterized using positive ion MS and negative ion MS, MS2, and MS3. The established HPLC-ESI-QIT-TOF MS with MSn switching and a normal phase column has been successfully applied to the structural characterization of LacCer and Gb4Cer in a crude mixture prepared from human erythrocytes.  相似文献   

12.
It is known that ceramide (Cer), the precursor of sphingoglycolipids and of sphingomyelin, participates in events leading to activation of the apoptotic pathway, and per se or through conversion to glucosylceramide (GlcCer) modulates formation of neuritic processes in developing neurons. To learn about the fate of de novo synthesized Cer and GlcCer we examined, in Golgi membranes from chicken embryo neural retina cells, the metabolic relationships of endogenous Cer, GlcCer and lactosylceramide (LacCer). Incubation of the membranes with UDP-[3H]Glc revealed a pool of endogenous Cer useful for synthesis of GlcCer. Most of the GlcCer synthesized, however, was not used for synthesis of LacCer, indicating that it was functionally uncoupled from LacCer synthase. On the other hand, incubation with UDP-[3H]Gal revealed a pool of endogenous GlcCer that depending of the integrity of the membranes was functionally coupled to LacCer and ganglioside synthesis. These results indicate that most GlcCer formed in vitro from Cer is topologically segregated from the synthesis of LacCer. However, subfractionation in sucrose gradients of Golgi membranes labeled with both precursors failed to separate membranes enriched in [3H]GlcCer from those enriched in [3H]Gal-labeled LacCer. It is concluded that despite both transfer steps co-localize in the Golgi membranes, coupling of GlcCer synthesis to LacCer synthesis requires conditions not present in our in vitro assay. This suggests that a coupling activity exists that could be relevant for regulation of the cytoplasmic levels of Cer and GlcCer.  相似文献   

13.
The content of glycosphingolipids (GSL) was studied in the urinary sediments (24-hr specimens) from seven normal subjects, a patient with Fabry's disease, and five homozygotes with familial hypercholesterolemia (FH). Normal urinary sediments contained very small amounts of GalCer, GlcCer, GaOse(2)Cer, LacCer, GbOse(3)Cer, and GbOse(4)Cer. In Fabry urinary sediment, the levels (nmole glucose/24 hr) of GaOse(2)Cer and of GbOse(3)Cer were 389 and 550, respectively. In urinary sediments from the FH subjects, the mean contents (nmol glucose/mg protein per 24 hr) of GlcCer, GalCer, and LacCer were 2.7, 1.9, and 15.8 times higher, respectively, than in normals. The mean contents ( micro g/mg protein per 24 hr) of total cholesterol and phospholipid in the urinary sediment of FH (1.1 and 224, respectively) and normals (0.8 and 220) were similar. The mean contents of GlcCer, GalCer, and LacCer, expressed in terms of the cholesterol content of urinary sediment (nmol glucose/ micro g cholesterol per 24 hr), were increased 3.4-, 1.6-, and 5.4-fold, respectively, in the FH homozygotes. Of the five FH homozygotes, only one, who had undergone a portacaval shunt and was also receiving lipid-lowering therapy, had a normal value of LacCer. The other four FH homozygotes had levels of LacCer that were 3- to 55-fold higher (nmol glucose/mg protein per 24 hr) and 5.5- to 7.3-fold higher (nmol glucose/ micro g cholesterol per 24 hr) than the mean of the normals. One homozygote underwent plasma exchange therapy that reduced both the baseline urinary (nmol glucose/24 hr) and plasma (nmol/100 ml) LacCer levels from 86 to 7 and from 1491 to 852, respectively. Eleven days after plasma exchange, the urinary LacCer levels approached pre-exchange levels (59 nmol glucose/24 hr). The data indicate that there is an abnormality of GSL metabolism associated with familial hyper-cholesterolemia and that the urinary excretion of GSL can be modified by plasma exchange therapy.-Chatterjee, S., C. S. Sekerke, and P. O. Kwiterovich, Jr. Increased urinary excretion of glycosphingolipids in familial hypercholesterolemia.  相似文献   

14.
M Saito  M Saito  A Rosenberg 《Biochemistry》1984,23(6):1043-1046
We have exposed cultured human fibroblasts to micromolar concentrations of the ionophore monensin. A salient result was a rapid accumulation in these cells of glucosylceramide (glucocerebroside, GlcCer) and lactosylceramide (lactocerebroside, LacCer). When we incubated these cells with radioactively labeled galactose, GlcCer and LacCer became highly labeled. These results indicate that monensin greatly increases these simplest glycosphingolipids that are the precursor to the major plasma membrane glycosphingolipids. We observed, simultaneously, a decreased incorporation of labeled galactose into some more highly glycosylated neutral glycosphingolipids and sialoglycosphingolipids (gangliosides), and unlike GlcCer and LacCer, the cellular content of these more highly glycosylated compounds remained the same in the presence or absence of monensin. We have found that cultured Gaucher disease fibroblasts, with genetically impaired lysosomal glucocerebrosidase activity, accumulated even more GlcCer and LacCer than normal cells upon exposure to monensin. This finding shows that monensin affects biosynthesis rather than merely disrupting lysosomal degradation that is already deleted with respect to GlcCer in Gaucher disease cells. These results represent the first indication of an apparently remarkable effect of the monovalent ionophore, monensin, on plasma membrane glycosphingolipid biosynthesis. The evidence suggests a regulatory distinction between initial and higher intracellular glycosylation steps. Monensin does not diminish and may augment initial anabolic mono- and diglycosylations and also appears to inhibit higher glycosylations of glycosphingolipids.  相似文献   

15.
To investigate in detail the expression of glycosphingolipids (GSLs) on endothelial cells, 4.85 x 10(9) human umbilical vein endothelial cells (HUVECs) were cultivated in a 2 l bioreactor using microcarriers as a support for anchorage dependent growing cells. Neutral GSLs and gangliosides were isolated and their structures were determined by TLC immunostaining, fast atom bombardment-mass spectrometry (FAB-MS) of the native GSLs, and gas chromatography-electron impact mass spectrometry (GC-EIMS) of partially methylated alditol acetates. GbOse4Cer, GbOse3Cer, and LacCer, all carrying mainly C24- and C16-fatty acid beside C18-sphingosine, were detected as the major neutral GSLs (36%, 23%, and 15% of the total orcinol stain, respectively); GlcCer, nLcOse4Cer, and nLcOse6Cer were expressed to substantial minor amounts (9%, 12%, and 5% of the total orcinol stain, respectively). TLC immunostaining revealed the presence of lipid bound Lewisx antigen, whereas the isomeric Lewisa structure was detectable only in very low quantities. GM3(Neu5Ac) with C18-sphingosine was the major ganglioside constituting about 90% of the whole ganglioside fraction. The fatty acid composition was determined by GC-MS of fatty acid methyl esters, indicating the predominance of C24- and C16-substituted GM3(Neu5Ac), followed by C18- and C22-substituted species. Terminally alpha2-3 sialylated neolacto-series ganglioside IV3Neu5Ac-nLcOse4Cer was the second most abundant ganglioside in HUVECs (8% of the total resorcinol stain), and IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6Cer (together less than 2% of total resorcinol stain) were found in minor quantities. Lipid bound sialyl Lewisx antigen with poly-N-acetyllactosaminyl chains, and traces of gangliotetraose-type gangliosides GM1 and GD1a were identified by TLC immunostaining. The expression of dominant neutral GSLs LacCer, GbOse3Cer, and GbOse4Cer, and of ganglioside GM3(Neu5Ac) was assayed by indirect immunofluorescence microscopy of cell layers grown in chamber slides, each showing different plasma membrane and subcellular distribution patterns. The complete structural characterization of GSLs from HUVECs contributes to our understanding about their functional role, not only of the carbohydrate but also of the lipid moiety, as receptors for bacterial toxins, as cell surface antigens of cellular interaction and as receptors for blood components and macromolecules of the extracellular matrix.  相似文献   

16.
Cell lines expressing varying levels of ganglioside GM3 at the cell surface show different degrees of adhesion and spreading on solid phase coated with such glycosphingolipids (GSLs) as Gg3 (GalNAc beta 1----4Gal beta 1----4Glc beta 1----1Cer), LacCer (Gal beta 1----4Glc beta 1----1Cer), or Gb4 (GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1Cer) (where Cer is ceramide), which may have structures complementary to GM3, but not on solid phase coated with various other GSLs. The degree of cell adhesion and spreading on Gg3 was correlated with the degree of cell-surface GM3 expression, as defined by reactivity with anti-GM3 monoclonal antibody (mAb) DH2. Only cells with high GM3 expression adhered on solid phase coated with LacCer or Gb4. Adhesion of GM3-expressing cells on Gg3-, LacCer-, and Gb4-coated solid phase is based on interaction of GM3 with Gg3 and, to a lesser extent, with LacCer and Gb4, as demonstrated by: (i) the interaction of the GM3 liposome with solid phase coated with Gg3, LacCer, and Gb4, respectively; (ii) the abolition of cell adhesion on each GSL-coated solid phase by treatment of cells with mAb DH2 or sialidase; and (iii) the inhibition of cell adhesion by treatment of GSL-coated solid phase with mAb specific to each GSL. Sialosyllactosyl-lysyllysine conjugate was bound to Gg3 adsorbed on a C18 silica gel column in the presence of bivalent cation, suggesting that the carbohydrate moiety of GM3 is involved in GM3-Gg3 interaction. Not only the adhesion and spreading of GM3-expressing cells, but also their cell motility was greatly enhanced on Gg3-coated solid phase, as determined by Transwell assay and phagokinetic track assay on a gold sol-coated surface. Spreading and motility of GM3-expressing cells on Gg3-coated solid phase were both inhibited by treatment of cells with mAb DH2 or sialidase. These results provide evidence that not only cell adhesion, but also spreading and motility in these cell lines are controlled by complementary GSL-GSL interaction.  相似文献   

17.
Previous studies have shown that certain glycosphingolipids may function as modulators of protein kinase C (PKC) activity. To study the structure-activity relationship, we examined the effects of 17 gangliosides, 10 neutral glycolipids, as well as sulfatide, psychosine and ceramide on PKC activity in PC12D cells. Using an in vitro assay system, we found that all but one (GQ1b) ganglioside inhibited PKC activity at concentrations between 25 and 100 µM, and the potency was proportional to the number of sialic acid residues. However, at lower concentrations several gangliosides, including GM1 and LM1 behaved as mild activators of PKC activity. GQ1b had no effect within the range 0.1–10 µM, but acted as a mild activator of PKC activity at 25 µM. On the other hand, fucosyl-GM1 and GM1 containing blood group B determinant, which are abundant in PC12 cells, were potent inhibitors of PKC activity. Among the neutral glycosphingolipids tested, LacCer, Gb3, GalGb3, and GA1, all of which have a terminal galactose residue, were found to be ineffective or acted as mild activators of PKC activity. In contrast, GA2, Gb4 and Gb5 which have a terminal N-acetylgalactosamine residue, were potent inhibitors of the PKC activity. Thus, the terminal sugar residue may play a pivotal role in determining the effect of glycosphingolipids in modulating PKC activity. In addition, we also found that GalCer containing normal fatty acids acted as potent activators of PKC activity. Ceramide and GlcCer appeared to be ineffective in modulating PKC activity, whereas psychosine and sulfatides appeared to be inhibitory. We conclude that the carbohydrate head groups and the hydrophobic groups of gangliosides and neutral glycolipids may modulate the PKC system in unique manners, which may in turn affect various biological processes in the cell.  相似文献   

18.
We have studied the effects ofD-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) and itsL-enantiomer on glycosphingolipids in cultured normal human kidney proximal tubular cells. We found thatD-PDMP exerted a concentration-dependent reduction in the metabolic labelling and cellular levels of glucosylceramide (GlcCer), lactosylceramide (LacCer), and the globo-series glycosphingolipids, GbOse3Cer and GbOse4Cer. It also directly inhibited the activity of UDP-glucose:ceramide 1 4-glucosyltransferase (GlcT-1) and UDP-galactose: GlcCer 1 4 galactosyltransferase (GalT-2). In contrast,L-PDMP had opposite effects on the metabolic labelling of GlcCer, LacCer, and GbOse3Cer. The levels of GlcCer and LacCer were increased, while the labelling and level of GbOse4Cer were strongly reduced. Purified GalT-2 from human kidney was inhibited byD-PDMP and stimulated byL-PDMP. It appears likely that the different glycosphingolipid glycosyltransferases possess similar binding sites for the ceramide moiety, which are blocked by binding toD-PDMP and, in the case of GbOse4Cer synthase, byL-PDMP as well. The stimulatory effects ofL-PDMP on GlcCer and LacCer synthases may be the result of binding to a modulatory site on the glycosyltransferases; in intact cells, the enzyme-analog complex may afford protection against the normal catabolic inactivation of the enzymes.Abbreviations GalT-2 UDP-galactose:GlcCer -galactosyltransferase - GbOse3Cer Gal1 4Gal1 GlcCer - GbOse4Cer GalNAc1 3Gal1 4Gal1 GlcCer - GlcCer glucosylceramide - GlcT-1 UDP-glucose:ceramide -glucosyltransferase - GSLs glycosphingolipids - LacCer lactosylceramide - PDMP threo-1-phenyl-2-decanolyamino-3-morpholino-1-propanol  相似文献   

19.
Mammalian glycosphingolipid (GSL) precursor monohexosylceramides are either glucosyl- or galactosylceramide (GlcCer or GalCer). Most GSLs derive from GlcCer. Substitution of the GSL fatty acid with adamantane generates amphipathic mimics of increased water solubility, retaining receptor function. We have synthesized adamantyl GlcCer (adaGlcCer) and adamantyl GalCer (adaGalCer). AdaGlcCer and adaGalCer partition into cells to alter GSL metabolism. At low dose, adaGlcCer increased cellular GSLs by inhibition of glucocerebrosidase (GCC). Recombinant GCC was inhibited at pH 7 but not pH 5. In contrast, adaGalCer stimulated GCC at pH 5 but not pH 7 and, like adaGlcCer, corrected N370S mutant GCC traffic from the endoplasmic reticulum to lysosomes. AdaGalCer reduced GlcCer levels in normal and lysosomal storage disease (LSD) cells. At 40 μM adaGlcCer, lactosylceramide (LacCer) synthase inhibition depleted LacCer (and more complex GSLs), such that only GlcCer remained. In Vero cell microsomes, 40 μM adaGlcCer was converted to adaLacCer, and LacCer synthesis was inhibited. AdaGlcCer is the first cell LacCer synthase inhibitor. At 40 μM adaGalCer, cell synthesis of only Gb(3) and Gb(4) was significantly reduced, and a novel product, adamantyl digalactosylceramide (adaGb(2)), was generated, indicating substrate competition for Gb(3) synthase. AdaGalCer also inhibited cell sulfatide synthesis. Microsomal Gb(3) synthesis was inhibited by adaGalCer. Metabolic labeling of Gb(3) in Fabry LSD cells was selectively reduced by adaGalCer, and adaGb(2) was produced. AdaGb(2) in cells was 10-fold more effectively shed into the medium than the more polar Gb(3), providing an easily eliminated "safety valve" alternative to Gb(3) accumulation. Adamantyl monohexosyl ceramides thus provide new tools to selectively manipulate normal cellular GSL metabolism and reduce GSL accumulation in cells from LSD patients.  相似文献   

20.
We analyzed glycosphingolipids from normal lymph node cells of seven cattle and lymph node cells of eight cattle with enzootic bovine leukosis. The neutral glycosphingolipids and gangliosides were analyzed by thin-layer chromatography. Both normal and tumorous lymph node cells had GlcCer, LacCer, and GbOse3Cer as major neutral glycosphingolipids. In the ganglioside fraction, GM3 was the predominant component in both normal and tumorous lymph node cells, and another component, ganglioside Gx fraction, was also prominent in tumorous lymph node cells. The structure of this ganglioside Gx fraction was elucidated by thin-layer chromatography, sugar analysis, neuraminidase digestion, and permethylation studies. This ganglioside Gx fraction was found to be a mixture of four ganglioside species. The structures of individual gangliosides Gx (1 to 4) were characterized as follows. 1: GD3, NeuAc alpha 2-8NeuAc alpha 2-3Gal1-4Glc-Cer. 2: GD3, NeuAc alpha 2-8NeuGc alpha 2-3Gal1-4Glc-Cer. 3: GD3, NeuGc alpha 2-8NeuAc alpha 2-3Gal1-Glc-Cer. 4: GD3, NeuGc alpha 2-8NeuGc alpha 2-3Gal1-4Glc-Cer. These GD3 species may be formed as a result of the induced synthesis inassociation with malignant transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号