共查询到20条相似文献,搜索用时 15 毫秒
1.
J. A. BAILEY 《The Annals of applied biology》1969,64(2):315-324
A sterile culture nitrate of Penicillium expansum was shown to induce pisatin synthesis in pea leaf discs. The amount of pisatin produced by pea leaves was shown to decrease as they underwent senescence. N6-benzyladenine delayed senescence, and at the same time maintained the production of pisatin at a high level. In darkness, leaf discs maintained on either benzyl-adenine solution or distilled water produced greater amounts of pisatin than leaf discs which were not treated in this way. Benzyladenine also increased pisatin production by leaf discs kept in the light. The relevance of these results to disease resistance and possible mechanisms involved are discussed. 相似文献
2.
Export of organic materials from developing fruits of pea and its possible relation to apical senescence 总被引:1,自引:1,他引:1
下载免费PDF全文

In the G2 line of peas (Pisum sativum L.) senescence and death of the apical bud occurs only in long days (LD) in the presence of fruits. Removal of the fruits prevents apical senescence. One possible reason for the senescence-inducing effect of fruit is that the fruits produce a senescence-inducing factor which moves to the apical bud and is responsible for the effect. For this to be possible there must be a transport mechanism by which material may move from the pods to the apex. To examine the extent of fruit export, pods were labeled via photoassimilation of 14CO2 beginning 12 days after anthesis. Under LD conditions, 1.14% of label fixed was transported from the pods with only 10.5% of this found in the apical bud and youngest leaves after 48 hours, the remainder being found principally in other developing fruits and mature leaves. During the onset of apical senescence, less total label was actually exported to the apical bud than at other times. In addition, more total export occurred from pods in short days than in LD, with the apical bud receiving a greater percentage than in LD. Thus the amount and distribution of export would not seem to support the idea of specific export of targeted senescence-promoting compounds. Girdling of the fruit peduncle did not change the characteristics of export suggesting movement via an apoplastic xylem pathway. 相似文献
3.
Summary Reciprocal grafts between plants of the tall variety Alaska and the dwarf Progress No. 9 show that neither roots nor mature leaves determine shoot phenotype. It is demonstrated that differences in stem growth between the two varieties are essentially controlled by a single Mendelian factor, and the effect of this Le locus is not graft transmissible. Combined with published data for gibberellin content this confirms that the Le locus does not control shoot phenotype by regulating gibberellin synthesis. Growth of slender plants (Le la crys) and early growth of microcryptodwarfs (le la cryclm) is not inhibited by AMO-1618 at concentrations which greatly reduce growth of tall plants. This is consistent with the suggestion that rapid growth in these varieties, in the absence of the inhibitory effect of La and Cry, is not dependent on endogenous gibberellin.The work was supported by United States Atomic Energy Commission Contract No AT (11-1)-1338 wilhe Dr. A.J.McComb was on leave from the University of Western Australia. 相似文献
4.
In the G2 line of peas (Pisum sativum L.), senescence of the shoot apex (which precedes leaf senescence) only occurs in long days (LD) though flowering is independent of photoperiod. It has been suggested that the photoperiodic control of senescence in G2 is mediated through different rates of seed growth. In LD seed growth is more rapid than in short days (SD) and this places a greater nutrient drain on the plant. In addition, more flowers develop into fruits in LD than in SD: 32% of flower buds abort in SD while almost none abort in LD. Senescence is associated with early seed growth and does not occur in deflowered or deseeded plants. Seed development is completed in 30d in LD while it takes 40d in SD, though the seed weights are similar. The maximum rate of fresh-weight gain of all the growing seeds of eight fruits on a plant in SD (1,440 mg/d) does not reach the maximum rate of weight gain of a similar fruit complement in LD (1,720 mg/d). The appearance of senescence symptoms in the shoot apices of LD-grown G2 plants occurs, however, prior to the time of the greatest rate of seed-weight gain. In LD, four fruits with a combined maximum growth rate of 1,250 mg/d are sufficient to cause the appearance of senescence symptoms. This is a lower combined seed growth rate than in SD where senescence does not occur. The seeds in up to 12 fruits can be growing at any time in SD with a combined maximum seed-growth rate (1,660 mg/d), only slightly less than the maximum in LD, with no sign of senescence. It is concluded that the different rates of seed growth occasioned by different photoperiods bear no relation to senescence. However, photoperiod does alter the spatial relationship of the shoot apex and the filling fruits. In LD apical growth becomes slower as fruiting proceeds so that the distance between the filling fruits and the apex is decreased to only two nodes while in SD, because of the delayed fruit development compared to LD, the spatial separation between the fruits and the shoot apex is nine nodes. Even if the growth rate of the plant had remained constant in LD it is calculated that an equivalent fruit complement would still be located three nodes further from the apex in SD than in LD. This increased spatial separation of fruits and apex in SD compared to LD probably alters the source/sink distribution of photosynthate and leaf derived hormones so that larger amounts are available to the apex in SD than LD. Also any senescence factor exported from fruits is less likely to reach the apex in SD. In continuously deflorated plants of G2 the two uppermost expanded stipules enclose the apex in SD while in LD they open out. The effect is reversible. Thus photoperiod probably affects the apex and its growth, directly, i.e. independent of fruit development, and this is accentuated by the differing spatial relationships of the apex and fruits resulting from different fruit growth rates under the different photoperiodic conditions.Abbreviations LD
long day(s)
- SD
short day(s) 相似文献
5.
Apical senescence in an early flowering line of pea, G2, is greatly delayed by short days. This behavior is controlled by two dominant genes. Apical senescence of ungrafted, insensitive (I) lines is unaffected by photoperiod. When I-type scions with one of the two required genes were grafted onto G2, apical senescence of the I-type was delayed in short days, but not in long days. Flowering of the I-type was unaffected. The apex of the G2 stock was unaffected as well. Apical senescence of an I-type line lacking both photoperiod genes was not delayed when grafted on G2 in short days. It is concluded that G2 plants grown in short days produce a graft-transmissible factor which delays apical senescence of photoperiodically insensitive lines. 相似文献
6.
7.
Effect of photoperiod on polyamine metabolism in apical buds of g2 peas in relation to the induction of apical senescence
下载免费PDF全文

Polyamine content and arginine decarboxylase activity of apical buds were measured to determine whether polyamines are required to prevent apical senescence in pea. Polyamines were assayed as dansyl derivatives which were separated by reverse phase high performance liquid chromatography and detected by fluorescence spectrophotometry. High polyamine concentrations were found in the vigorous apices of plants grown under a short day photoperiod during which senescence is delayed. As the apex senesced in long days, the amounts of polyamines per organ declined in parallel with decreases in the size of the apical bud. However, a decrease in polyamine concentration, due mainly to a change in spermidine, occurred at the time of marked reduction in bud size and growth rate, but not before the onset of the early symptoms of senescence. No correlation was found with arginine decarboxylase. The results suggest polyamines may be required to support bud growth, but the photoperiodic mechanism which governs apical senescence of G2 peas does not exert control through polyamine metabolism. 相似文献
8.
S. MATTHEWS 《The Annals of applied biology》1973,75(1):93-105
In two separate experiments in 1970 and 1971 the germination ability of seeds that had been rapidly desiccated following harvesting from glasshouse-grown pea plants improved with time after fertilization. In 1970 the germination of seeds directly after harvesting also improved with time. In both years the readiness with which electrolytes were leached from dried seeds decreased with seed age, measured as time after fertilization. The germination ability of desiccated seeds, and of undried seeds in 1970, improved after the cessation of seed moisture increase on the parent plant. This improvement coincided, in 1970, with a fall in the readiness with which electrolytes could be leached from seeds and with a decline in the rate of oxygen uptake of seeds directly after harvest. Vital staining of dried seeds from harvest samples indicated the viability of the samples as determined by germination tests. In both years, when the cotyledons first showed complete staining, the staining was very intense; in 1970 this occurred in a harvest sample with a greater than 50% germination level, but in 1971 it occurred in a sample that showed incomplete staining in the embryo axis and less than 5 % germination. In 1971 the comparative rates of moisture loss from seeds, measured with a sensor element diffusion porometer, were very low at 25 days after fertilization, increased up to a peak at 35 days and fell to a rate at the final harvest (44 days) which was nearly three times faster than the initial rate. Thus, during the period of dehydration, after 37 days, the seeds were able to lose moisture. When seeds were allowed to lose moisture slowly after harvest, before being desiccated rapidly, their eventual condition as measured by leaching improved. Also, the faster the initial water loss preceding rapid desiccation the more readily were the dried seeds leached. It is suggested that seeds can only withstand rapid desiccation after the cessation of moisture increase and after some slow dehydration, which is accompanied by a slowing down in physiological activity. 相似文献
9.
The gibberellin (GA) economy of young pea (Pisum sativum L.) fruits was investigated using a range of mutants with altered GA biosynthesis or deactivation. The synthesis mutation
lh-2 substantially reduced the content of both GA4 and GA1 in young seeds. Among the other synthesis mutations, ls-1, le-1 and le-3, the largest reduction in seed GA1 content was only 1.7-fold (le-1), while GA4 was not reduced in these mutants, and in fact accumulated in some experiments (compared with the wild type). Mutation sln appeared to block the step GA20 to GA29 in young pods and seeds, but not as strongly as in older seeds. Mutations ls-1, le-1 and le-3 markedly reduced pod GA1 levels, but pod elongation was not affected. After feeds of [13C,3H]GA20 to leaves, the pods contained 13C,3H-labelled GA20, GA1, GA29 and GA81, and the seeds, [13C,3H]GA20 and [13C,3H]GA29. These findings are discussed in relation to recent suggestions regarding the role and origin of GA1 in pea fruits.
Received: 6 June 1997 / Accepted: 15 July 1997 相似文献
10.
CO2 effects on apical dominance in Pisum sativum 总被引:1,自引:0,他引:1
Alaska pea plants (Pisum sativum L.) were grown at 0.10 vol% and 0.035 vol% CO2 to determine the effects of high CO2 concentration upon plant growth and apical dominance. The results showed that a 0.10 vol% CO2 atmosphere significantly increased the rate of lateral branch, flower bud, flower and fruit development over an environment with 0.035 vol% CO2. At plant maturity, however, there were no significant differences in the number of branches or fruits produced at the different CO2 levels. Thus, no evidence was obtained for the loss of apical dominance at the CO2 concentrations tested. Root dry weight was significantly greater in plants grown at 0.10 vol% CO2 than in those grown at 0.035 vol% CO2 and leaf dry weight was significantly lower. However, no significant differences were found in total plant dry weight production at plant maturity. 相似文献
11.
Changes in the weight and in the chlorophyll, free amino-acid and protein content of developing and senescing, vegetative and reproductive organs of Pisum sativum L. (cv. Burpeeana) were measured, and the proteolytic activity in extracts from the senescing leaf and the subtended pod was followed in relation to these changes. Protein content decreased in the ageing leaf and pod while it increased in the developing cotyledon. The proteolytic activity of the leaf did not increase as the leaf protein content decreased. In contrast, proteolytic activity in the subtended pod increased while the protein level decreased. The proteolytic activity in the extracts from the ageing organs was greater than the rates of protein loss. The proteolytic activity of leaf and pod extracts was greater on protein prepared from the respective organ than on non-physiological substrates. Proteolysis was increased by 2-mercaptoethanol and ethylenediaminetetraacetate but was not influenced by addition of ATP to the reaction mixture. The pH optimum was at 5.0. Free amino acids did not accumulate in the senescing leaf or pod when protein was degraded in each organ. It is suggested that these amino acids were quickly metabolized in situ or translocated to sink areas in the plant, especially to the developing seeds. 相似文献
12.
13.
Gibberellins A1, A8, A20 and A29 were identified by capillary gas chromatography-mass spectrometry in the pods and seeds from 5-d-old pollinated ovaries of pea (Pisum sativum cv. Alaska). These gibberellins were also identified in 4-d-old non-developing, parthenocarpic and pollinated ovaries. The level of gibberellin A1 within these ovary types was correlated with pod size. Gibberellin A1, applied to emasculated ovaries cultured in vitro, was three to five times more active than gibberellin A20. Using pollinated ovary explants cultured in vitro, the effects of inhibitors of gibberellin biosynthesis on pod growth and seed development were examined. The inhibitors retarded pod growth during the first 7 d after anthesis, and this inhibition was reversed by simultaneous application of gibberellin A3. In contrast, the inhibitors, when supplied to 4-d-old pollinated ovaries for 16 d, had little effect on seed fresh weight although they reduced the levels of endogenous gibberellins A20 and A29 in the enlarging seeds to almost zero. Paclobutrazol, which was one of the inhibitors used, is xylem-mobile and it efficiently reduced the level of seed gibberellins without being taken up into the seed. In intact fruits the pod may therefore be a source of precursors for gibberellin biosynthesis in the seed. Overall, the results indicate that gibberellin A1, present in parthenocarpic and pollinated fruits early in development, regulates pod growth. In contrast the high levels of gibberellins A20 and A29, which accumulate during seed enlargement, appear to be unnecessary for normal seed development or for subsequent germination.Abbreviations GA(a)
gibberellin An
- GC-MS
combined gas chromatography-mass spectrometry
- HPLC
high-performance liquid chromatography
- PFK
perfluorokerosene
- PVP
polyvinylpyrrolidone 相似文献
14.
The effect of various treatments on the apical senescence and polyamine content of apical buds of G2 peas was analysed. Defruiting prevented senescence and increased bud size and polyamine content. Exogenous applications of GA20 enhanced bud size and spermidine concentration. Applied spermidine had a slight effect on spermidine level but did not delay senescence. ACC strongly induced adecrease in bud size and, at 10 mM, apical senescence. This was accompanied by a steady decline in the level of all polyamines though their concentration remained constant until 10 mM ACC, where a drop was noted. Spermidine in the presence of ACC modulated the effect of ACC on the bud size while returning the internal polyamine content to control levels. AVG, an inhibitor of ACC synthesis produced pronounced increases in putrescine though no apparent effect on apical bud growth. Polyamine synthesis inhibitors were without effect on growth or internal polyamine content. The internal polyamine content appeared to correlate with apical bud size and vigor but did not show any consistent relationship to apical bud senescence. 相似文献
15.
16.
Summary The effectiveness of oxygen movement through pea seedlings has been assessed firstly by assaying for radial oxygen loss along the roots using the cylindrical Pt electrode technique, and secondly by measuring root growth in various oxygen-free media.It was found that roots would grow in oxygen-free 3% agar to a length exceeding 20 cm, but when such plants were removed to oxygen-free 0.05% agar oxygen could not be detected in the apical segments in roots longer than 9.5 cm unless respiratory activity was curtailed by cooling.If the greater part of the root was retained in 3% agar and only the apical region exposed to 0.05% agar and assayed, oxygen loss always occurred. It was concluded that the 3% agar has a jacketing effect substantially reducing oxygen leakage from the root surface and thus allowing more oxygen to channel down to the apical regions.Root growth in unstirred air-saturated 0.05% agar matched the growth in oxygen-free 3% agar. Root growth in unstirred oxygen-free 0.05% agar was arrested at c. 9 cm.It is suggested that the effect produced by the aerated unstirred 0.05% agar is consistent with a jacketing effect mitigating oxygen loss from the root and that a growth of 9 cm in unstirred deoxygenated agar is consistent with a smaller jacketing effect due to the unstirred medium.It is proposed that the accumulation of respiratory tissue will eventually render inadequate any jacketing effect. Further aerobic development at this stage will require a supply of oxygen from the rooting medium. 相似文献
17.
Summary When eight 14C-labelled auxin and non-auxin compounds were applied to the apical buds of intact dwarf pea seedlings (Pisum sativum L.), only [1-14C]indoleacetic acid ([14C]IAA) and -[1-14C] naphthaleneacetic acid ([14C]NAA) underwent appreciable basipetal transport during the first 24 h; over a longer period (72 h) considerable basipetal transport of the auxin [1-14C]2,4-dichlorophenoxyacetic acid ([14C]2,4-D) also occurred, but at a very much lower velocity (ca. 1.4–2.2 mm·h-1). The movement of 2,4-D possessed many of the characteristics of a typical auxin transport. During uptake and transport IAA and NAA were extensively metabolised to the corresponding aspartates, and to ethanol-insoluble/NaOH-soluble compounds; little metabolism of 2,4-D was observed. None of the non-auxin compounds applied (sorbose, sucrose, leucine, adenine and kinetin) underwent appreciable basipetal transport from the apical bud. All but sorbose were extensively metabolised by the apical tissues. Little metabolism of sorbose itself was detected.The results suggest that the long-distance basipetal auxin transport system from the apical bud of intact plants is specific for auxins; the specificity may result from the affinity of auxins for specific transport sites. 相似文献
18.
The possible involvement of peroxisomes and their activated-oxygen metabolism in the mechanism of leaf senescence was investigated in detached pea (Pisum sativum L.) leaves which were induced to senesce by incubation in complete darkness for up to 11 d. At days 0, 3, 8, and 11 of senescence, peroxisomes were purified from leaves and the activities of different peroxisomal and glyoxysomal enzymes were measured. Xanthine-oxidoreductase activity increased with senescence, especially the O
2
. -
-producing xanthine oxidase (EC 1.1.3.22). The activities of H2O2-generating Mn-superoxide dismutase (EC 1.15.1.1) and urate oxidase (EC 1.7.3.3) were also enhanced by senescence, whereas catalase (EC 1.11.1.6) activity was severely depressed. Hydrogen peroxide concentrations increased significantly in senescent leaf peroxisomes. During the progress of senescence, glycollate oxidase (EC 1.1.3.1) and hydroxypyruvate reductase (EC 1.1.1.81), two marker enzymes of photorespiratory metabolism, gradually decreased in activity and disappeared. At the same time, the activities of malate synthase (EC 4.1.3.2) and isocitrate lyase (EC 4.1.3.1), key enzymes of the glyoxylate cycle, which were undetectable in presenescent leaves, increased dramatically upon induction of senescence. Ultrastructural studies of intact leaves showed that the population of peroxisomes and mitochondria increased with senescence. Results indicate that peroxisomes could play a role, mediated by activated oxygen species, in the oxidative mechanism of leaf senescence, and further support the idea, proposed by other authors, that foliar senescence is associated with the transition of leaf peroxisomes into glyoxysomes.Abbreviation Mn-SOD
(manganese-containing) superoxide dismutase
The authors thank Dr. A.J. Sánchez-Raya (Unidad de Fisiología Vegetal, Estación Experimental del Zaidín, Granada, Spain) for his valuable help in measuring ethylene production, and Dr. G. Barja de Quiroga (Departamento de Biología Animal II, Universidad Complutense, Madrid, Spain) for carrying out the malondialdehyde determinations by HPLC. This work was supported by grant PB87-0404-01 from the DGICYT and the Junta de Andaluc'ia (Research Group # 3315), Spain. 相似文献
19.
1. The uptake of indol-3-yl acetic acid ([1-14C]IAA, 0–2.0 M) into light-grown pea stem segments was measured under various conditions to investigate the extent to which mechanisms of auxin transport in crown gall suspension culture cells (Rubery and Sheldrake, Planta 118, 101–121, 1974) are also found in a tissue capable of polar auxin transport. — 2. IAA uptake increased as the external pH was lowered. IAA uptake was less than that of benzoic acid (BA), naphthylacetic acid (NAA) or 2,4 dichlorophenoxyacetic acid (2,4D) under equivalent conditions. TIBA enhanced net IAA uptake through inhibition of efflux, and to a lesser extent, also increased uptake of NAA and 2,4D while it had no effect on BA uptake. — 3. Both DNP and, at higher concentrations, BA, reduced IAA uptake probably because of a reduction of cytoplasmic pH. However, low concentrations of both BA and DNP caused a slight enhancement of IAA net uptake, possibly through a reduction of carrier-mediated IAA efflux. In the presence of TIBA, the inhibitory effects of DNP and BA were more severe and there was no enhancement of uptake at low concentrations. — 4. Non-radioactive IAA (10 M) reduced uptake of labelled IAA but further increases in concentration up to 1.0 mM produced first an inhibition (0–10 min) of labelled IAA uptake, followed by a stimulation at later times. Non-radioactive 2,4 D decreased, but was not observed to stimulate, uptake of labelled IAA. In the presence of TIBA labelled IAA uptake was inhibited by non-radioactive IAA regardless of its concentration. — 5. Sulphydryl reagents PCMB and PCMBS promoted or inhibited IAA uptake depending, respectively, on whether they penetrated or were excluded from the cells. The penetrant PCMB also reduced the promotion of labelled IAA uptake by TIBA or by high concentrations of added non-labelled IAA. — 6. Our findings are interpreted as being consistent with the diffusive entry of unionised IAA into cells together with some carrier-mediated uptake. Auxin efflux from the cells also appears to have a carrier-mediated contribution, at least part of which is inhibited by TIBA, and which has a capacity at least as great as that of the uptake carrier. The data indicate that pea stem segments contain cells whose mechanisms of trans-membrane auxin transport fit the model of polar auxin transport proposed from experiments with crown gall suspension cells, although differences, particularly of carrier specificity, are apparent between the two systems.Abbreviations IAA
indol-3-yl acetic acid
- BA
benzoic acid
- NAA
1-naphthylacetic acid
- 2,4-D
2,4-dichlorophenoxyacetic acid
- TIBA
2,3,5-triiodobenzoic acid
- DNP
2,4-dinitrophenol
- PCMB
p-chloromercuribenzoic acid
- PCMBS
p-chloromercuribenzene sulphonic acid
This work was performed in Cambridge during the tenure of a sabbatical leave by P.J.D. Supported by a grant for supplies from the American Philosophical Society to P.J.D. 相似文献
20.
An early flowering genetic line of peas (Pisum sativum L.), designated G2, has dominant genes at two different loci, both of which function in short days to greatly extend the reproductive phase and thus to delay apical senescence. Long days (18 hours) promote senescence in this line, but the effect is reversible by reinstatement of short days (9 hours) until 3 to 4 days before the apex senesces. The response to photoperiod was quantitative. Increasing the photoperiod from 14 to 18 hours led to a progressive decrease in the number of nodes formed prior to death of the apex. Induction of senescence was determined by the total number of hours of light and darkness rather than by the length of the dark period. Senescence required flower and fruit development as well as long days. 相似文献