首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
In all eukaryotes, multisubunit histone acetyltransferase (HAT) complexes acetylate the highly conserved lysine residues in the amino-terminal tails of core histones to regulate chromatin structure and gene expression. One such complex in yeast, NuA4, specifically acetylates nucleosome-associated histone H4. Recent studies have revealed that NuA4 comprises at least 11 subunits, including Yng2p, a yeast homolog of the candidate human tumor suppressor gene, ING1. Consistent with prior data, we find that cells lacking Yng2p are deficient for NuA4 activity and are temperature-sensitive. Furthermore, we show that the NuA4 complex is present in the absence of Yng2p, suggesting that Yng2p functions to maintain or activate NuA4 HAT activity. Sporulation of diploid yng2 mutant cells reveals a defect in meiotic progression, whereas synchronized yng2 mutant cells display a mitotic delay. Surprisingly, genome-wide expression analysis revealed little change from wild type. Nocodazole arrest and release relieves the mitotic defects, suggesting that Yng2p may have a critical function prior to or during metaphase. Rather than a uniform decrease in acetylated forms of histone H4, we find striking cell-to-cell heterogeneity in the loss of acetylated histone H4 in yng2 mutant cells. Treating yng2 mutants with the histone deacetylase inhibitor trichostatin A suppressed the mitotic delay and restored global histone H4 acetylation, arguing that reduced H4 acetylation may underlie the cell cycle delay.  相似文献   

3.
The results of this study show that H1 degrees can be induced by sodium butyrate and trichostatin A in peripheral blood lymphocytes, a cell system which does not normally express this linker histone variant. Moreover, this induced expression was found to be correlated in a dose-dependent manner with the concomitant induction of apoptosis and increased levels of histone H4 acetylation. Sodium butyrate and trichostatin A, both inhibitors of histone deacetylases, are known to induce terminal differentiation and at the same time the induction of the linker histone variant, H1 degrees, in a number of tissue/cell systems. Moreover, aside from induced expression by histone deacetylase inhibitors, H1 degrees gene expression has also been tightly associated with the process of terminal differentiation in many physiological tissue/cell systems. The concomitant induction of H1 degrees expression along with apoptosis and histone acetylation in the same cell system has not been previously reported. Histone acetylation is known to be involved in chromatin remodelling events. Such events also occur during apoptosis. The association of H1 degrees gene expression with apoptosis, and not with differentiation in these cells, leads to more general implications as to a potential functional role of H1 degrees during chromatin remodelling.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The tumor suppressor Chk2 kinase plays crucial roles in regulating cell-cycle checkpoints and apoptosis following DNA damage. We investigated the expression levels of the genes encoding Chk2 and several cell-cycle regulators in nine cell lines from lymphoid malignancies, including three Hodgkin's lymphoma (HL) lines. We found that all HL cell lines exhibited a drastic reduction in Chk2 expression without any apparent mutation of the Chk2 gene. However, expression of Chk2 in HL cells was restored following treatment with the histone deacetylase inhibitors trichostatin A (TsA) and sodium butyrate (SB), or with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5Aza-dC). Chromatin-immunoprecipitation (Chip) assays revealed that treatment of HL cells with TsA, SB or 5Aza-dC resulted in increased levels of acetylated histones H3 and H4, and decreased levels of dimethylated H3 lysine 9 at the Chk2 promoter. These results indicate that expression of the Chk2 gene is downregulated in HL cells via epigenetic mechanisms.  相似文献   

17.
《Epigenetics》2013,8(4):390-399
CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1.  相似文献   

18.
19.
CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号