首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enriched environment (EE) is neuroprotective in several animal models of neurodegeneration. It stimulates the expression of trophic factors and modifies the astrocyte cell population which has been said to exert neuroprotective effects. We have investigated the effects of EE on 6-hydroxydopamine (6-OHDA)-induced neuronal death after unilateral administration to the medial forebrain bundle, which reaches 85–95% of dopaminergic neurons in the substantia nigra after 3 weeks. Continuous exposure to EE 3 weeks before and after 6-OHDA injection prevents neuronal death (assessed by tyrosine hydroxylase staining), protects the nigrostriatal pathway (assessed by Fluorogold retrograde labeling) and reduces motor impairment. Four days after 6-OHDA injection, EE was associated with a marked increase in glial fibrillary acidic protein staining and prevented neuronal death (assessed by Fluoro Jade-B) but not partial loss of tyrosine hydroxylase staining in the anterior substantia nigra. These results robustly demonstrate that EE preserves the entire nigrostriatal system against 6-OHDA-induced toxicity, and suggests that an early post-lesion astrocytic reaction may participate in the neuroprotective mechanism.  相似文献   

2.
Normal cellular metabolism produces oxidants that are neutralized within cells by antioxidant enzymes and other antioxidants. An imbalance between oxidant and antioxidant has been postulated to lead the degeneration of dopaminergic neurons in Parkinson's disease. In this study, we examined whether selenium, an antioxidant, can prevent or slowdown neuronal injury in a 6-hydroxydopamine (6-OHDA) model of Parkinsonism. Rats were pre-treated with sodium selenite (0.1, 0.2 and 0.3 mg/kg body weight) for 7 days. On day 8, 2 micro L 6-OHDA (12.5 micro g in 0.2% ascorbic acid in normal saline) was infused in the right striatum. Two weeks after 6-OHDA infusion, rats were tested for neurobehavioral activity, and were killed after 3 weeks of 6-OHDA infusion for the estimation of glutathione peroxidase, glutathione-S-transferase, glutathione reductase, glutathione content, lipid peroxidation, and dopamine and its metabolites. Selenium was found to be successful in upregulating the antioxidant status and lowering the dopamine loss, and functional recovery returned close to the baseline dose-dependently. This study revealed that selenium, which is an essential part of our diet, may be helpful in slowing down the progression of neurodegeneration in parkinsonism.  相似文献   

3.
The ability of aluminium to affect the oxidant status of specific areas of the brain (cerebellum, ventral midbrain, cortex, hippocampus, striatum) was investigated in rats intraperitoneally treated with aluminium chloride (10 mg Al3+/kg/day) for 10 days. The potential of aluminium to act as an etiological factor in Parkinson's disease (PD) was assessed by studying its ability to increase oxidative stress in ventral midbrain and striatum and the striatal dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of PD. The results showed that aluminium caused an increase in oxidative stress (TBARS, protein carbonyl content, and protein thiol content) for most of the brain regions studied, which was accompanied by a decrease in the activity of some antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase). However, studies in vitro confirmed the inability of aluminium to affect the activity of those enzymes. The reported effects exhibited a regional-selective behaviour for all the cerebral structures studied. Aluminium also enhanced the ability of 6-hydroxydopamine to cause oxidative stress and neurodegeneration in the dopaminergic system, which confirms its potential as a risk factor in the development of PD.  相似文献   

4.
Nicotine reduces dopaminergic deficits in parkinsonian animals when administered before nigrostriatal damage. Here we tested whether nicotine is also beneficial when given to rats and monkeys with pre-existing nigrostriatal damage. Rats were administered nicotine before and after a unilateral 6-hydroxydopamine lesion of the medial forebrain bundle, and the results compared with those in which rats received nicotine only after lesioning. Nicotine pre-treatment attenuated behavioral deficits and lessened lesion-induced losses of the striatal dopamine transporter, and α6β2* and α4β2* nicotinic receptors (nAChRs). By contrast, nicotine administered 2 weeks after lesioning, when 6-hydroxydopamine-induced neurodegenerative effects are essentially complete, did not improve these same measures. Similar results were observed in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned monkeys. Nicotine did not enhance striatal markers when administered to monkeys with pre-existing nigrostriatal damage, in contrast to previous data that showed improvements when nicotine was given to monkeys before lesioning. These combined findings in two animal models suggest that nicotine is neuroprotective rather than neurorestorative against nigrostriatal damage. Receptor studies with 125I-α-conotoxinMII and the α-conotoxinMII analog E11A were next performed to determine whether nicotine treatment pre- or post-lesioning differentially affected expression of α6α4β2* and α6(nonα4)β2* nAChR subtypes in striatum. The observations suggest that protection against nigrostriatal damage may be linked to striatal α6α4β2* nAChRs.  相似文献   

5.
Cellular interactions between activated microglia and degenerating neurons in in vivo models of Parkinson's disease are not well defined. This time course study assesses the dynamics of morphological and immunophenotypic properties of activated microglia in a 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Neurodegeneration in the substantia nigra pars compacta (SNc) was induced by unilateral injection of 6-OHDA into the medial forebrain bundle. Activated microglia, identified using monoclonal antibodies: clone of antibody that detects major histocompatibility complex (MHC) class II antigens (OX6) for MHC class II, clone of antibody that detects cell surface antigen-cluster of differentiation 11b – anti-complement receptor 3, a marker for complement receptor 3 and CD 68 for phagocytic activity. Activation of microglia in the lesioned SNc was rapid with cells possessing amoeboid or ramified morphology appeared on day 1, whilst antibody clone that detects macrophage-myeloid associated antigen immunoreactivity was observed at day 3 post-lesion when there was no apparent loss of tyrosine hydroxylase (TH)+ve dopaminergic (DA) SNc neurons. Thereafter, OX6 and antibody clone that detects macrophage-myeloid associated antigen activated microglia selectively adhered to degenerating axons, dendrites and apoptotic (caspase 3+ve) DA neurons in the SNc were observed at day 7. This was followed by progressive loss of TH+ve SNc neurons, with the peak of TH+ve cell loss (51%) being observed at day 9. This study suggests that activation of microglia precedes DA neuronal cell loss and neurons undergoing degeneration may be phagocytosed prematurely by phagocytic microglia.  相似文献   

6.
One of the hallmarks of Parkinson's disease (PD) is pathological structure, termed Lewy body, containing inclusions of ubiquitinated proteins in the dopaminergic neurons in the substantia nigra. The mechanism leading to the formation of these aggregates is unclear, although it has been shown that mutations in alpha-synuclein or in the ubiquitin-related enzyme UCH-L1 might induce such protein aggregation. We, therefore, examined the possible role of 6-hydroxydopamine (6-OHDA), a dopaminergic neurotoxin used in PD experimental models, in causing protein degradation and its association with the ubiquitin system. Using antiubiquitin antibodies we found that exposure of SH-SY5Y neuroblastoma and PC-12 cell lines to 6-OHDA increased the levels of free ubiquitin and ubiquitin-conjugated proteins, in a dose-dependent manner. Furthermore, metabolic labeling with 35S-methionine, demonstrated that 6-OHDA markedly increased protein degradation, as indicated by the secretion of protein metabolites to the medium. Inhibition of the proteasome activity by the specific inhibitor MG132, attenuated the protein degradation induced by 6-OHDA and potentiated its toxicity. Administration of the antioxidant N-acetylcysteine to the 6-OHDA-treated cells, increased cell survival and reduced protein degradation. In conclusion, our findings suggest that 6-OHDA toxicity is associated with protein degradation and ubiquitin–proteasome system activation.  相似文献   

7.
Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by selective loss of dopaminergic neurons in the pars compacta of the substantia nigra. Levodopa ( l -dopa) and dopamine agonists have been most commonly used for symptomatic treatment. However, there are discrepancies between clinical and experimental data with respect to the neuroprotective effects of these drugs on dopaminergic neurons. In this study, to determine whether l -dopa is toxic or dopamine agonist is neuroprotective to dopaminergic neurons, we evaluated the neuroprotective properties of l -dopa and the pramipexol (PPX), one of dopamine agonists, with a focus on the regulatory effects of the anti-oxidant properties and cell survival or apoptotic signal pathways in the same experimental design, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD animals. The glutathione level in MPTP-treated mice was significantly increased by PPX administration but not by L-dopa treatment. The expression of phosphorylated extracellular signal regulated kinase in MPTP-treated mice was significantly increased only with l -dopa treatment. Treatment with either l -dopa or PPX in MPTP-treated mice led to significantly decreased expressions of JNK phosphorylation, Bax, and cytochrome c and to an increased level of Bcl-2 expression with a similar degree, compared with the levels in MPTP-only treated mice. Immunohistochemical analysis showed that both l -dopa and PPX increased significantly survival of dopaminergic neurons in MPTP-treated mice. Our study demonstrated that both l -dopa and PPX had comparable neuroprotective properties for dopaminergic neurons in MPTP-treated PD animal models, through modulation of cell survival and apoptotic pathways.  相似文献   

8.
Two biochemical deficits have been described in the substantia nigra in Parkinson's disease, decreased activity of mitochondrial complex I and reduced proteasomal activity. We analysed interactions between these deficits in primary mesencephalic cultures. Proteasome inhibitors (epoxomicin, MG132) exacerbated the toxicity of complex I inhibitors [rotenone, 1-methyl-4-phenylpyridinium (MPP+)] and of the toxic dopamine analogue 6-hydroxydopamine, but not of inhibitors of mitochondrial complex II-V or excitotoxins [N-methyl-d-aspartate (NMDA), kainate]. Rotenone and MPP+ increased free radicals and reduced proteasomal activity via adenosine triphosphate (ATP) depletion. 6-hydroxydopamine also increased free radicals, but did not affect ATP levels and increased proteasomal activity, presumably in response to oxidative damage. Proteasome inhibition potentiated the toxicity of rotenone, MPP+ and 6-hydroxydopamine at concentrations at which they increased free radical levels >/= 40% above baseline, exceeding the cellular capacity to detoxify oxidized proteins reduced by proteasome inhibition, and also exacerbated ATP depletion caused by complex I inhibition. Consistently, both free radical scavenging and stimulation of ATP production by glucose supplementation protected against the synergistic toxicity. In summary, proteasome inhibition increases neuronal vulnerability to normally subtoxic levels of free radicals and amplifies energy depletion following complex I inhibition.  相似文献   

9.
Despite the identification of several mutations in familial Parkinson's disease (PD), the underlying mechanisms of dopaminergic neuronal loss in idiopathic PD are still unknown. To study whether caspase-dependent apoptosis may play a role in the pathogenesis of PD, we examined 6-hydroxydopamine (6-OHDA) toxicity in dopaminergic SH-SY5Y cells and in embryonic dopaminergic mesencephalic cultures. 6-OHDA induced activation of caspases 3, 6 and 9, chromatin condensation and cell death in SH-SY5Y cells. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)fluoromethylketone (zVAD-fmk) or adenovirally mediated ectopic expression of the X-chromosomal inhibitor of apoptosis protein (XIAP) blocked caspase activation and prevented death of SH-SY5Y cells. Similarly, zVAD-fmk provided protection from 6-OHDA-induced loss of tyrosine hydroxylase-positive neurones in mesencephalic cultures. In contrast, zVAD-fmk failed to protect mesencephalic dopaminergic neurones from 6-OHDA-induced loss of neurites and reduction of [(3)H]dopamine uptake. These data suggest that, although caspase inhibition provides protection from 6-OHDA-induced death of dopaminergic neurones, the neurones may remain functionally impaired.  相似文献   

10.
6-Hydroxydopamine (6-OHDA) is a dopaminergic neurotoxin putatively involved in the pathogenesis of Parkinson's disease (PD). Its neurotoxicity has been related to the production of reactive oxygen species. In this study we examine the effects of the antioxidants ascorbic acid (AA), glutathione (GSH), cysteine (CySH), and N-acetyl-CySH (NAC) on the autoxidation and neurotoxicity of 6-OHDA. In vitro, the autoxidation of 6-OHDA proceeds rapidly with the formation of H2O2 and with the participation of the H2O2 produced in the reaction. The presence of AA induced a reduction in the consumption of O2 during the autoxidation of 6-OHDA and a negligible presence of the p-quinone, which demonstrates the efficiency of AA to act as a redox cycling agent. The presence of GSH, CySH, and NAC produced a significant reduction in the autoxidation of 6-OHDA. In vivo, the presence of sulfhydryl antioxidants protected against neuronal degeneration in the striatum, which was particularly remarkable in the case of CySH and was attributed to its capacity to remove the H2O2 produced in the autoxidation of 6-OHDA. These results corroborate the involvement of oxidative stress as the major mechanism in the neurotoxicity of 6-OHDA and the putative role of CySH as a scavenger in relation to PD.  相似文献   

11.
Exogenous administration of various neurotrophic factors has been shown to protect neurons in animal model of Parkinson's disease (PD). Several attempts are being made to search a tissue source simultaneously expressing many of these neurotrophic factors. Carotid body (CB) contains oxygen-sensitive glomus cells rich in dopamine (DA) and expresses glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and neurotrophin-3. We have attempted to study the functional restoration following co-transplantation of CB cells and ventral mesencephalic cells (VMC) in a 6-hydroxydopamine-lesioned rat model of PD. A significant recovery (p < 0.001) in d-amphetamine-induced circling behavior (80%) and spontaneous locomotor activity (85%) was evident in co-transplanted animals at 12 weeks post-transplantation as compared to lesioned animals. Similarly, a significant (p < 0.001) restoration was observed in DA-D(2) receptor binding (77%), striatal DA (87%) and 3,4-dihydroxyphenylacetic acid (DOPAC) (85%) levels and nigral DA (75%) and DOPAC (74%) levels. Functional recovery was accompanied by tyrosine hydroxylase (TH) expression and quantification of TH-positive cells by image analysis revealed a significant restoration in TH-immunoreactive (IR) fiber density in striatum, as well as TH-IR neurons in substantia nigra pars compacta in co-transplanted animals over VMC-transplanted animals. The result suggests that co-transplantation of CB cells along with VMC provides better and long-term functional restoration in the rat model of PD, possibly by supporting the survival of newly grafted cells as well as remaining host DA neurons.  相似文献   

12.
Parkinson's disease (PD) is a common movement disorder marked by the loss of dopaminergic (DA) neurons in the brain stem and the presence of intraneuronal inclusions designated as Lewy bodies (LB). The cause of neurodegeneration in PD is not clear, but it has been suggested that protein misfolding and aggregation contribute significantly to the development of the disease. Misfolded and aggregated proteins are cleared by ubiquitin proteasomal system (UPS) and autophagy lysosomal pathway (ALP). Recent studies suggested that different types of ubiquitin linkages can modulate these two pathways in the process of protein degradation. In this study, we found that co-expression of ubiquitin can rescue neurons from α-syn-induced neurotoxicity in a Drosophila model of PD. This neuroprotection is dependent on the formation of lysine 48 polyubiquitin linkage which is known to target protein degradation via the proteasome. Consistent with our results that we observed in vivo , we found that ubiquitin co-expression in the cell can facilitate cellular protein degradation by the proteasome in a lysine 48 polyubiquitin-dependent manner. Taken together, these results suggest that facilitation of proteasomal protein degradation can be a potential therapeutic approach for PD.  相似文献   

13.
Bone marrow derived mesenchymal stem cells (BMMSCs) is a valid, definitive candidate for repair of damaged tissues in degenerative disorders in general and neurological diseases in particular. We have standardized the processing conditions for proliferation of BMMSCs using xenofree medium and checked their in vitro and in vivo neurogenic potential.

Method

The proliferative potential of BMMSCs was analyzed using xenofree media and functionality checked by transplantation into Parkinson's disease (PD) animal models. In vitro neuronal differentiation was investigated by neuronal induction media supplemented with growth factors. Differentiated cells were characterized at cellular and molecular levels. In vitro functionality estimated by dopamine secretion.

Results

A pure population of BMMSCs showing an 8–10 fold expansion was obtained using xenofree media. On differentiation to neuronal lineage, they exhibited neuronal morphology. Detectable levels of dopamine (1.93 ng/ml) were secreted into the culture media of differentiated cells. There was a significant behavioural improvement in PD models 3 months post transplantation.

Conclusion

Our study demonstrates that BMMSCs can be transdifferentiated efficiently into functional dopaminergic neurons both in vitro and in vivo. This holds immense clinical potential as a replacement therapy for PD and other neurodegenerative diseases.  相似文献   

14.
In the present study, we investigated the effect of the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) on hydroxyl free radical and peroxynitrite formation in vivo using D-phenylalanine as a novel mechanistic probe. In vivo microdialysis was carried out in the striatum of freely moving male Wistar rats. The microdialysis probes were perfused with artificial cerebrospinal fluid containing 5 mM D-phenylalanine (flow rate 2 microL/min). After obtaining a stable baseline 6-OHDA was delivered into the striatum via reverse microdialysis for 60 min. HPLC measurements of the effluent were performed using photodiode array detection for determination of phenylalanine derived o-tyrosine and m-tyrosine (as hydroxylation markers) as well as of nitrotyrosine and nitrophenylalanine (as nitration markers). The basal levels of the hydroxylation derived products of phenylalanine were approximately 100-fold higher than those of the nitration derived products. 6-OHDA (0.1, 1, 10 mM) significantly increased o- and m-tyrosine up to nine- and 13-fold, respectively, whereas levels of 3-nitrotyrosine and 4-nitrophenylalanine were significantly increased up to 422- and 358-fold, respectively. The results demonstrate that phenylalanine is a sensitive in vivo marker for 6-OHDA-induced hydroxylation and nitration reactions which are clearly concentration dependent. We conclude that peroxynitrite formation is involved in 6-OHDA-induced neurochemical effects.  相似文献   

15.
This review considers evidence which reveals considerable complexity and sex differences in the response of the nigrostriatal dopaminergic (NSDA) system to hormonal influences. This pathway degenerates in Parkinson's disease (PD) and sex hormones contribute to sex differences in PD, where men fare worse than women. Here we discuss evidence from animal studies which allows us to hypothesize that, contrary to expectations, the acclaimed neuroprotective property of physiological concentrations of estradiol arises not by promoting NSDA neuron survival, but by targeting powerful adaptive responses in the surviving neurons, which restore striatal DA functionality until over 60% of neurons are lost. Estrogen generated locally in the NSDA region appears to promote these adaptive mechanisms in females and males to preserve striatal DA levels in the partially injured NSDA pathway. However, responses to systemic steroids differ between the sexes. In females there is general agreement that gonadal steroids and exogenous estradiol promote striatal adaptation in the partially injured NSDA pathway to protect against striatal DA loss. In contrast, the balance of evidence suggests that in males gonadal factors and exogenous estradiol have negligible or even harmful effects. Sex differences in the organization of NSDA-related circuitry may well account for these differences. Compensatory mechanisms and sexually dimorphic hard-wiring are therefore likely to represent important biological substrates for sex dimorphisms. As these processes may be targeted differentially by systemic steroids in males and females, further understanding of the underlying processes would provide valuable insights into the potential for hormone-based therapies in PD, which would need to be sex-specific. Alternatively, evidence that estrogen generated locally is protective in the injured male NSDA pathway indicates the great therapeutic potential of harnessing central steroid synthesis to ameliorate neurodegenerative disorders. A clearer understanding of the relative contributions and inter-relationships of central and systemic steroids within the NSDA system is an important goal for future studies.  相似文献   

16.
Mutations in PTEN-induced kinase 1 (PINK1) are associated with a familial syndrome related to Parkinson's disease (PD). We previously reported that stable neuroblastoma SH-SY5Y cell lines with reduced expression of endogenous PINK1 exhibit mitochondrial fragmentation, increased mitochondria-derived superoxide, induction of compensatory macroautophagy/mitophagy and a low level of ongoing cell death. In this study, we investigated the ability of protein kinase A (PKA) to confer protection in this model, focusing on its subcellular targeting. Either: (1) treatment with pharmacological PKA activators; (2) transient expression of a constitutively active form of mitochondria-targeted PKA; or (3) transient expression of wild-type A kinase anchoring protein 1 (AKAP1), a scaffold that targets endogenous PKA to mitochondria, reversed each of the phenotypes attributed to loss of PINK1 in SH-SY5Y cells, and rescued parameters of mitochondrial respiratory dysfunction. Mitochondrial and lysosomal changes in primary cortical neurons derived from PINK1 knockout mice or subjected to PINK1 RNAi were also reversed by the activation of PKA. PKA phosphorylates the rat dynamin-related protein 1 isoform 1 (Drp1) at serine 656 (homologous to human serine 637), inhibiting its pro-fission function. Mimicking phosphorylation of Drp1 recapitulated many of the protective effects of AKAP1/PKA. These data indicate that redirecting endogenous PKA to mitochondria can compensate for deficiencies in PINK1 function, highlighting the importance of compartmentalized signaling networks in mitochondrial quality control.  相似文献   

17.
一体化病证结合帕金森病大鼠模型中医证候属性研究   总被引:1,自引:0,他引:1  
目的探讨6-OHDA帕金森病(PD)大鼠模型的中医证候属性。方法 采用经典的6-羟基多巴胺损毁注射法制作PD模型,随机分为模型组和药物治疗组,并分别采用天麻钩藤饮、桃红四物汤和涤痰汤进行反证治疗,同时设立正常对照组、假手术组。分别观察各组动物的神经行为学、舌象、氧化应激、环核苷酸、血管活性物质等的变化,从症状(行为学和舌象)、药物治疗反证、客观检测指标等方面对6-羟基多巴胺制作的PD模型进行综合分析,评价该模型的中医证候属性。结果(1)舌象:PD模型大鼠显微舌象分析结果为红舌。(2)行为学方面:PD模型大鼠的旋转圈数明显升高,与各药物组比较,差异均有显著性(P〈0.01);天麻钩藤饮与桃红四物汤组、涤痰汤组比较,差异亦均有显著性(P〈0.05),而桃红四物汤组与涤痰汤组差异无显著性(P〉0.05)。(3)客观指标:与正常对照组、假手术组比较,PD模型组MDA、cAMP、ET、TXB2含量明显升高,SOD、GSH、GSH-Px、cGMP、6-keto-PGF1α含量下降(P〈0.01);天麻钩藤饮可明显降低MDA、cAMP、ET、TXB2(P〈0.05或P〈0.01),升高SOD、GSH、GSH-Px、cGMP、6-keto-PGF1α(P〈0.01),桃红四物汤组、涤痰汤可升高SOD、GSH、GSH-Px(P〈0.05,或P〈0.01),降低cAMP(P〈0.05)、ET(P〈0.01)。天麻钩藤饮与涤痰汤组在SOD、GSH、cGMP,与桃红四物汤组在SOD、GSH、GSH-Px、cGMP、6-keto-pgf1α、TXB2,差异有显著性(P〈0.05,或P〈0.01)。涤痰汤组与桃红四物汤组TXB2(P〈0.05),余各指标间差异无显著性(P〉0.05)。结论 6-羟基多巴胺制作的PD大鼠模型的中医证候属性属于阴虚动风证。  相似文献   

18.
Dysregulation of dopamine (DA) receptors is believed to underlie Parkinson's disease pathology and l -DOPA-induced motor complications. DA receptors are subject to regulation by G protein-coupled receptor kinases (GRKs) and arrestins. DA lesion with 6-hydroxydopamine caused multiple protein- and brain region-specific changes in the expression of GRKs. In the globus pallidus, all four GRK isoforms (GRK2, 3, 5, 6) were reduced in the lesioned hemisphere. In the caudal caudate-putamen (cCPu) three GRK isoforms (GRK2, 3, 6) were decreased by DA depletion. The decrease in GRK proteins in globus pallidus, but not cCPu, was mirrored by reduction in mRNA. GRK3 protein was reduced in the rostral caudate-putamen (rCPu), whereas other isoforms were either unchanged or up-regulated. GRK6 protein and mRNA were up-regulated in rCPu and nucleus accumbens. l -DOPA (25 mg/kg, twice daily for 10 days) failed to reverse changes caused by DA depletion, whereas D2/D3 agonist pergolide (0.25 mg/kg daily for 10 days) restored normal levels of expression of GRK5 and 6. In rCPu, GRK2 protein was increased in most subcellular fractions by l -DOPA but not by DA depletion alone. Similarly, l -DOPA up-regulated arrestin3 in membrane fractions in both regions. GRK5 was down-regulated by l -DOPA in cCPu in the light membrane fraction, where this isoform is the most abundant. The data suggest that alterations in the expression and subcellular distribution of arrestins and GRKs contribute to pathophysiology of Parkinson's disease. Thus, these proteins may be targets for antiparkinsonian therapy.  相似文献   

19.
Dysregulation of signaling pathways is believed to contribute to Parkinson's disease pathology and l-DOPA-induced motor complications. Long-lived dopamine (DA) agonists are less likely to cause motor complications by virtue of continuous stimulation of DA receptors. In this study, we compared the effects of the unilateral 6-hydroxydopamine lesion and subsequent treatment with l-DOPA and DA agonist pergolide on signaling pathways in rats. Pergolide caused less pronounced behavioral sensitization than l-DOPA (25 mg/kg, i.p., 10 days), particularly at lower dose (0.5 and 0.25 mg/kg, i.p.). Pergolide, but not l-DOPA, reversed lesion-induced up-regulation of preproenkephalin and did not up-regulate preprodynorphine or DA D3 receptor in the lesioned hemisphere. Pergolide was as effective as l-DOPA in reversing the lesion-induced elevation of ERK2 phosphorylation in response to acute apomorphine administration (0.05 mg/kg, s.c.). Chronic l-DOPA significantly elevated the level of Akt phosphorylation at both Thr(308) and Ser(473) and concentration of phosphorylated GSK3alpha, whereas pergolide suppressed the lesion- and/or challenge-induced supersensitive Akt responses. The data indicate that l-DOPA, unlike pergolide, exacerbates imbalances in the Akt pathway caused by the loss of DA. The results support the hypothesis that the Akt pathway is involved in long-term actions of l-DOPA and may be linked to l-DOPA-induced dyskinesia.  相似文献   

20.
The hematopoietic cytokines erythropoietin (Epo) and granulocyte-colony stimulating factor (G-CSF) provide neuroprotection in several in vitro and in vivo models of Parkinson’s disease (PD). The molecular mechanism by which Epo and G-CSF signals reduce the neuronal death in PD is not clear. Here, we show that in rat pheochromocytoma PC12 cells, Epo and G-CSF efficiently repressed the 1-methyl-4-phenylpyridinium (MPP+)-induced expression of the proapoptotic protein PUMA (p53 up-regulated modulator of apoptosis). Accordingly, Epo and G-CSF treatment reduced the PC12 cell fraction that underwent apoptosis by MPP+ treatment and thus improved cell viability. Downregulation of PUMA expression by Epo and G-CSF in MPP+-treated PC12 cells seems to be mediated by repression of p53, as the expression of p53 was increased by MPP+-treatment and reduced by Epo and G-CSF. Together, these results suggest that the neuroprotective activities of Epo and G-CSF in an experimental model of PD involve the repression of the apoptosis-inducing action of PUMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号