首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
KATP channels regulate insulin secretion by coupling β-cell metabolism to membrane excitability. These channels are comprised of a pore-forming Kir6.2 tetramer which is enveloped by four regulatory SUR1 subunits. ATP acts on Kir6.2 to stabilize the channel closed state while ADP (coordinated with Mg(2+)) activates channels via the SUR1 domains. Aberrations in nucleotide-binding or in coupling binding to gating can lead to hyperinsulinism or diabetes. Here, we report a case of diabetes in a 7-mo old child with compound heterozygous mutations in ABCC8 (SUR1[A30V] and SUR1[G296R]). In unison, these mutations lead to a gain of KATP channel function, which will attenuate the β-cell response to increased metabolism and will thereby decrease insulin secretion. (86)Rb(+) flux assays on COSm6 cells coexpressing the mutant subunits (to recapitulate the compound heterozygous state) show a 2-fold increase in basal rate of (86)Rb(+) efflux relative to WT channels. Experiments on excised inside-out patches also reveal a slight increase in activity, manifested as an enhancement in stimulation by MgADP in channels expressing the compound heterozygous mutations or homozygous G296R mutation. In addition, the IC 50 for ATP inhibition of homomeric A30V channels was increased ~6-fold, and was increased ~3-fold for both heteromeric A30V+WT channels or compound heterozygous (A30V +G296R) channels. Thus, each mutation makes a mechanistically distinct contribution to the channel gain-of-function that results in neonatal diabetes, and which we predict may contribute to diabetes in related carrier individuals.  相似文献   

2.
ATP-sensitive potassium (KATP) channels are formed by the coassembly of four Kir6.2 subunits and four sulfonylurea receptor subunits (SUR). The cytoplasmic domains of Kir6.2 mediate channel gating by ATP, which closes the channel, and membrane phosphoinositides, which stabilize the open channel. Little is known, however, about the tertiary or quaternary structures of the domains that are responsible for these interactions. Here, we report that an ion pair between glutamate 229 and arginine 314 in the intracellular COOH terminus of Kir6.2 is critical for maintaining channel activity. Mutation of either residue to alanine induces inactivation, whereas charge reversal at positions 229 and 314 (E229R/R314E) abolishes inactivation and restores the wild-type channel phenotype. The close proximity of these two residues is demonstrated by disulfide bond formation between cysteine residues introduced at the two positions (E229C/R314C); disulfide bond formation abolishes inactivation and stabilizes the current. Using Kir6.2 tandem dimer constructs, we provide evidence that the ion pair likely forms by residues from two adjacent Kir6.2 subunits. We propose that the E229/R314 intersubunit ion pairs may contribute to a structural framework that facilitates the ability of other positively charged residues to interact with membrane phosphoinositides. Glutamate and arginine residues are found at homologous positions in many inward rectifier subunits, including the G-protein-activated inwardly rectifying potassium channel (GIRK), whose cytoplasmic domain structure has recently been solved. In the GIRK structure, the E229- and R314-corresponding residues are oriented in opposite directions in a single subunit such that in the tetramer model, the E229 equivalent residue from one subunit is in close proximity of the R314 equivalent residue from the adjacent subunit. The structure lends support to our findings in Kir6.2, and raises the possibility that a homologous ion pair may be involved in the gating of GIRKs.  相似文献   

3.
SUR1 is an ATP-binding cassette (ABC) transporter with a novel function. In contrast to other ABC proteins, it serves as the regulatory subunit of an ion channel. The ATP-sensitive (KATP) channel is an octameric complex of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits, and it links cell metabolism to electrical activity in many cell types. ATPase activity at the nucleotide-binding domains of SUR results in an increase in KATP channel open probability. Conversely, ATP binding to Kir6.2 closes the channel. Metabolic regulation is achieved by the balance between these two opposing effects. Precisely how SUR1 talks to Kir6.2 remains unclear, but recent studies have identified some residues and domains that are involved in both physical and functional interactions between the two proteins. The importance of these interactions is exemplified by the fact that impaired regulation of Kir6.2 by SUR1 results in human disease, with loss-of-function SUR1 mutations causing congenital hyperinsulinism and gain-of-function SUR1 mutations leading to neonatal diabetes. This paper reviews recent data on the regulation of Kir6.2 by SUR1 and considers the molecular mechanisms by which SUR1 mutations produce disease.  相似文献   

4.
The β cell KATP channel is an octameric complex of four pore-forming subunits (Kir6.2) and four regulatory subunits (SUR1). A truncated isoform of Kir6.2 (Kir6.2ΔC26), which expresses independently of SUR1, shows intrinsic ATP sensitivity, suggesting that this subunit is primarily responsible for mediating ATP inhibition. We show here that mutation of C166, which lies at the cytosolic end of the second transmembrane domain, to serine (C166S) increases the open probability of Kir6.2ΔC26 approximately sevenfold by reducing the time the channel spends in a long closed state. Rundown of channel activity is also decreased. Kir6.2ΔC26 containing the C166S mutation shows a markedly reduced ATP sensitivity: the K i is reduced from 175 μM to 2.8 mM. Substitution of threonine, alanine, methionine, or phenylalanine at position C166 also reduced the channel sensitivity to ATP and simultaneously increased the open probability. Thus, ATP does not act as an open channel blocker. The inhibitory effects of tolbutamide are reduced in channels composed of SUR1 and Kir6.2 carrying the C166S mutation. Our results are consistent with the idea that C166 plays a role in the intrinsic gating of the channel, possibly by influencing a gate located at the intracellular end of the pore. Kinetic analysis suggests that the apparent decrease in ATP sensitivity, and the changes in other properties, observed when C166 is mutated is largely a consequence of the impaired transition from the open to the long closed state.  相似文献   

5.
The sensitivity of K(ATP) channels to high-affinity block by sulfonylureas and to stimulation by K(+) channel openers and MgADP (PCOs) is conferred by the regulatory sulfonylurea receptor (SUR) subunit, whereas ATP inhibits the channel through interaction with the inward rectifier (Kir6.2) subunit. Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) profoundly antagonized ATP inhibition of K(ATP) channels expressed from cloned Kir6.2+SUR1 subunits, but also abolished high affinity tolbutamide sensitivity. By stabilizing the open state of the channel, PIP(2) drives the channel away from closed state(s) that are preferentially affected by high affinity tolbutamide binding, thereby producing an apparent loss of high affinity tolbutamide inhibition. Mutant K(ATP) channels (Kir6. 2[DeltaN30] or Kir6.2[L164A], coexpressed with SUR1) also displayed an "uncoupled" phenotype with no high affinity tolbutamide block and with intrinsically higher open state stability. Conversely, Kir6. 2[R176A]+SUR1 channels, which have an intrinsically lower open state stability, displayed a greater high affinity fraction of tolbutamide block. In addition to antagonizing high-affinity block by tolbutamide, PIP(2) also altered the stimulatory action of the PCOs, diazoxide and MgADP. With time after PIP(2) application, PCO stimulation first increased, and then subsequently decreased, probably reflecting a common pathway for activation of the channel by stimulatory PCOs and PIP(2). The net effect of increasing open state stability, either by PIP(2) or mutagenesis, is an apparent "uncoupling" of the Kir6.2 subunit from the regulatory input of SUR1, an action that can be partially reversed by screening negative charges on the membrane with poly-L-lysine.  相似文献   

6.
Molecular determinants of KATP channel inhibition by ATP.   总被引:7,自引:0,他引:7       下载免费PDF全文
ATP-sensitive K+ (KATP) channels are both inhibited and activated by intracellular nucleotides, such as ATP and ADP. The inhibitory effects of nucleotides are mediated via the pore-forming subunit, Kir6.2, whereas the potentiatory effects are conferred by the sulfonylurea receptor subunit, SUR. The stimulatory action of Mg-nucleotides complicates analysis of nucleotide inhibition of Kir6. 2/SUR1 channels. We therefore used a truncated isoform of Kir6.2, that expresses ATP-sensitive channels in the absence of SUR1, to explore the mechanism of nucleotide inhibition. We found that Kir6.2 is highly selective for ATP, and that both the adenine moiety and the beta-phosphate contribute to specificity. We also identified several mutations that significantly reduce ATP inhibition. These are located in two distinct regions of Kir6.2: the N-terminus preceding, and the C-terminus immediately following, the transmembrane domains. Some mutations in the C-terminus also markedly increased the channel open probability, which may account for the decrease in apparent ATP sensitivity. Other mutations did not affect the single-channel kinetics, and may reduce ATP inhibition by interfering with ATP binding and/or the link between ATP binding and pore closure. Our results also implicate the proximal C-terminus in KATP channel gating.  相似文献   

7.
The ATP-sensitive potassium (K(ATP)) channel exhibits spontaneous bursts of rapid openings, which are separated by long closed intervals. Previous studies have shown that mutations at the internal mouth of the pore-forming (Kir6.2) subunit of this channel affect the burst duration and the long interburst closings, but do not alter the fast intraburst kinetics. In this study, we have investigated the nature of the intraburst kinetics by using recombinant Kir6.2/SUR1 K(ATP) channels heterologously expressed in Xenopus oocytes. Single-channel currents were studied in inside-out membrane patches. Mutations within the pore loop of Kir6.2 (V127T, G135F, and M137C) dramatically affected the mean open time (tau(o)) and the short closed time (tauC1) within a burst, and the number of openings per burst, but did not alter the burst duration, the interburst closed time, or the channel open probability. Thus, the V127T and M137C mutations produced longer tau(o), shorter tauC1, and fewer openings per burst, whereas the G135F mutation had the opposite effect. All three mutations also reduced the single-channel conductance: from 70 pS for the wild-type channel to 62 pS (G135F), 50 pS (M137C), and 38 pS (V127T). These results are consistent with the idea that the K(ATP) channel possesses a gate that governs the intraburst kinetics, which lies close to the selectivity filter. This gate appears to be able to operate independently of that which regulates the long interburst closings.  相似文献   

8.
KATP channels gated by intracellular nucleotides and phospholipids.   总被引:6,自引:0,他引:6  
The KATP channel is a heterooctamer composed of two different subunits, four inwardly rectifying K+ channel subunits, either Kir6. 1 or Kir6.2, and four sulfonylurea receptors (SUR), which belong to the family of ABC transporters. This unusual molecular architecture is related to the complex gating behaviour of these channels. Intracellular ATP inhibits KATP channels by binding to the Kir6.x subunits, whereas Mg-ADP increases channel activity by a hydrolysis reaction at the SUR. This ATP/ADP dependence allows KATP channels to link metabolism to excitability, which is important for many physiological functions, such as insulin secretion and cell protection during periods of ischemic stress. Recent work has uncovered a new class of regulatory molecules for KATP channel gating. Membrane phospholipids such as phosphoinositol 4, 5-bisphosphate and phosphatidylinositiol 4-monophosphate were found to interact with KATP channels resulting in increased open probability and markedly reduced ATP sensitivity. The membrane concentration of these phospholipids is regulated by a set of enzymes comprising phospholipases, phospholipid phosphatases and phospholipid kinases providing a possible mechanism for control of cell excitability through signal transduction pathways that modulate activity of these enzymes. This review discusses the mechanisms and molecular determinants that underlie gating of KATP channel by nucleotides and phospholipids and their physiological implications.  相似文献   

9.
Adenosine triphosphate (ATP)-sensitive K^* (KATP) channels regulate many cellular functions by coupling the metabolic state of the cell to the changes in membrane potential. Truncation of C-terminal 26 amino acid residues of Kir6.2 protein (Kir6.2ΔC26) deletes its endoplasmic reticulum retention signal, allowing functional expression of Kit6.2 in the absence of sulfonylurea receptor subunit, pEGFP-Kir6.2ΔC26 and pKir6.2ΔC26-IRES2-EGFP expression plasmids were constructed and transfected into HEK293 cells. We identified that Kir6.2ΔC26 was localized on the plasma membrane and trafficked to the plasmalemma by means of constitutive exocytosis of Kir6.2ΔC26 transport vesicles, using epi-fluorescence and total intemal reflection fluorescence microscopy. Our electrophysiological data showed that Kir6.2ΔC26 alone expressed KATP currents, whereas EGFP-Kir6.2ΔC26 fusion protein displayed no KATP channel activity.  相似文献   

10.
ATP-sensitive potassium (KATP) channels couple cell metabolism to electrical activity by regulating K+ flux across the plasma membrane. Channel closure is mediated by ATP, which binds to the pore-forming subunit (Kir6.2). Here we use homology modelling and ligand docking to construct a model of the Kir6.2 tetramer and identify the ATP-binding site. The model is consistent with a large amount of functional data and was further tested by mutagenesis. Ligand binding occurs at the interface between two subunits. The phosphate tail of ATP interacts with R201 and K185 in the C-terminus of one subunit, and with R50 in the N-terminus of another; the N6 atom of the adenine ring interacts with E179 and R301 in the same subunit. Mutation of residues lining the binding pocket reduced ATP-dependent channel inhibition. The model also suggests that interactions between the C-terminus of one subunit and the 'slide helix' of the adjacent subunit may be involved in ATP-dependent gating. Consistent with a role in gating, mutations in the slide helix bias the intrinsic channel conformation towards the open state.  相似文献   

11.
ATP-sensitive potassium (KATP) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP2). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP2, SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP2 sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP2 gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation.  相似文献   

12.
ATP-sensitive potassium (K(ATP)) channels are composed of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits. Binding of ATP to Kir6.2 leads to inhibition of channel activity. Because there are four subunits and thus four ATP-binding sites, four binding events are possible. ATP binds to both the open and closed states of the channel and produces a decrease in the mean open time, a reduction in the mean burst duration, and an increase in the frequency and duration of the interburst closed states. Here, we investigate the mechanism of interaction of ATP with the open state of the channel by analyzing the single-channel kinetics of concatenated Kir6.2 tetramers containing from zero to four mutated Kir6.2 subunits that possess an impaired ATP-binding site. We show that the ATP-dependent decrease in the mean burst duration is well described by a Monod-Wyman-Changeux model in which channel closing is produced by all four subunits acting in a single concerted step. The data are inconsistent with a Hodgkin-Huxley model (four independent steps) or a dimer model (two independent dimers). When the channel is open, ATP binds to a single ATP-binding site with a dissociation constant of 300 microM.  相似文献   

13.
Major advances have been made on the inhibition gate and ATP site of the K(ir)6.2 subunit of the K(ATP) channel, but little is known about conformational coupling between the two. ATP site mutations dramatically disrupt ATP-dependent gating without effect on ligand-independent gating, observed as interconversions between active burst and inactive interburst conformations in the absence of ATP. This suggests that linkage between site and gate is conditionally dependent on ATP occupancy. We studied all substitutions at position 334 of the ATP site in K(ir)6.2deltaC26 that express in Xenopus oocytes. All substitutions disrupted ATP-dependent gating by 10-fold or more. Only positive-charged arginine or lysine at 334, however, slowed ligand-independent gating from the burst, and this was in some but not all patches. Moreover, the polycationic peptide protamine reversed the slowed gating from the burst of 334R mutant channels, and speeded the slow gating from the burst of wild-type SUR1/K(ir)6.2 in the absence of ATP. Our results support a two-step ligand-dependent linkage mechanism for K(ir)6.2 channels in which ATP-occupied sites function to electrostatically dissociate COOH-terminal domains from the membrane, then as in all K(ir) channels, free COOH-terminal domains and inner M2 helices transit to a lower energy state for gate closure.  相似文献   

14.
Anionic phospholipids modulate the activity of inwardly rectifying potassium channels (Fan, Z., and J.C. Makielski. 1997. J. Biol. Chem. 272:5388-5395). The effect of phosphoinositides on adenosine triphosphate (ATP) inhibition of ATP-sensitive potassium channel (K(ATP)) currents was investigated using the inside-out patch clamp technique in cardiac myocytes and in COS-1 cells in which the cardiac isoform of the sulfonylurea receptor, SUR2, was coexpressed with the inwardly rectifying channel Kir6.2. Phosphoinositides (1 mg/ml) increased the open probability of K(ATP) in low [ATP] (1 microM) within 30 s. Phosphoinositides desensitized ATP inhibition with a longer onset period (>3 min), activating channels inhibited by ATP (1 mM). Phosphoinositides treatment for 10 min shifted the half-inhibitory [ATP] (K(i)) from 35 microM to 16 mM. At the single-channel level, increased [ATP] caused a shorter mean open time and a longer mean closed time. Phosphoinositides prolonged the mean open time, shortened the mean closed time, and weakened the [ATP] dependence of these parameters resulting in a higher open probability at any given [ATP]. The apparent rate constants for ATP binding were estimated to be 0.8 and 0.02 mM(-1) ms(-1) before and after 5-min treatment with phosphoinositides, which corresponds to a K(i) of 35 microM and 5.8 mM, respectively. Phosphoinositides failed to desensitize adenosine inhibition of K(ATP). In the presence of SUR2, phosphoinositides attenuated MgATP antagonism of ATP inhibition. Kir6.2DeltaC35, a truncated Kir6.2 that functions without SUR2, also exhibited phosphoinositide desensitization of ATP inhibition. These data suggest that (a) phosphoinositides strongly compete with ATP at a binding site residing on Kir6.2; (b) electrostatic interaction is a characteristic property of this competition; and (c) in conjunction with SUR2, phosphoinositides render additional, complex effects on ATP inhibition. We propose a model of the ATP binding site involving positively charged residues on the COOH-terminus of Kir6.2, with which phosphoinositides interact to desensitize ATP inhibition.  相似文献   

15.
Cardiac ATP-sensitive potassium channels (KATP) are found in both the sarcoplasmic reticulum (sarcKATP) and the inner membrane of mitochondria (mitoKATP). SarcKATP are composed of a pore containing subunit Kir6.2 and a regulatory sulfonylurea receptor subunit (SUR2), but the composition of mitoKATP remains unclear. An unusual intra-exonic splice variant of SUR2 (SUR2A-55) was previously identified in mitochondria of mammalian heart and brain, and by analogy with sarcKATP we proposed SUR2A-55 as a candidate regulatory subunit of mitoKATP. Although SUR2A-55 lacks the first nucleotide binding domain (NBD) and 2 transmembrane domains (TMD), it has a hybrid TMD and retains the second NBD. It resembles a hemi-ABC transporter suggesting it could multimerize to function as a regulatory subunit. A putative mitochondrial targeting signal in the N-terminal domain of SUR2A-55 was removed by truncation and when co-expressed with Kir6.1 and Kir6.2 it targeted to the plasma membrane and yielded KATP currents. Single channel conductance, mean open time, and burst open time of SUR2A-55 based KATP was similar to the full-length SUR2A based KATP. However, the SUR2A-55 KATP were 70-fold less sensitive to block by ATP, and twice as resistant to intracellular Ca2+ inhibition compared with the SUR2A KATP, and were markedly insensitive to KATP drugs, pinacidil, diazoxide, and glybenclamide. These results suggest that the SUR2A-55 based channels would tend to be open under physiological conditions and in ischemia, and could account for cardiac and mitochondrial phenotypes protective for ischemia.  相似文献   

16.
The ATP-sensitive K+ channels (KATP) play an important role in regulating membrane excitability. These channels are regulated by H+ in addition to ATP, ADP, and phospholipids. To understand how protons affect the single-channel properties, Kir6.2DeltaC36 currents were studied in excised inside-out patches. We chose to study the homomeric Kir6.2 channel with 36 amino acids deleted at the C-terminal end, as there are ADP/ATP-binding sites in the SUR subunit, which may obscure the understanding of the channel-gating process. In the absence of ATP, moderate intracellular acidosis (pH 6.8) augmented P(open) with small suppression (by approximately 10%) of the single-channel conductance. The long and intermediate closures were selectively inhibited, leading to a shortening of the mean closed time without significant changes in the mean open time. Stronger acidification (相似文献   

17.
Diadenosine tetraphosphate (Ap4A) has been recently discovered in the pancreatic cells where targets ATP-sensitive K+ (KATP) channels, depolarizes the cell membrane and induces insulin secretion. However, whether Ap4A inhibit pancreatic KATP channels by targeting protein channel complex itself was unknown. Therefore, we coexpressed pancreatic KATP channel subunits, Kir6.2 and SUR1, in COS-7 cells and examined the effect of Ap4A on the single channel behavior using the inside-out configuration of the patch-clamp technique. Ap4A inhibited channel opening in a concentration-dependent manner. Analysis of single channels demonstrated that Ap4A did not change intraburst kinetic behavior of KATP channels, but rather decreased burst duration and increased between-burst duration. It is concluded that Ap4A antagonizes KATP channel opening by targeting channel subunits themselves and by keeping channels longer in closed interburst states.  相似文献   

18.
KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. The molecular interactions between SUR1 and Kir6.2 that govern channel gating and biogenesis are incompletely understood. In a recent study, we showed that a SUR1 and Kir6.2 mutation pair, E203K-SUR1 and Q52E-Kir6.2, at the SUR1/Kir6.2 interface near the plasma membrane increases the ATP-sensitivity of the channel by nearly 100-fold. Here, we report the finding that the same mutation pair also suppresses channel folding/trafficking defects caused by select SUR1 mutations in the first transmembrane domain of SUR1. Analysis of the contributions from individual mutations, however, revealed that the correction effect is attributed largely to Q52E-Kir6.2 alone. Moreover, the correction is dependent on the negative charge of the substituting amino acid at the Q52 position in Kir6.2. Our study demonstrates for the first time that engineered mutations in Kir6.2 can correct the biogenesis defect caused by specific mutations in the SUR1 subunit.  相似文献   

19.
KATP channels are heteromultimers of a sulfonylurea receptor SUR and KIR6.2 with the inward rectifier forming the pore which is regulated by SUR. We have examined the contributions of the cytoplasmic domains of KIR6.2 to control of spontaneous bursting and ATP-inhibition in human SUR1/KIR6.2 KATP channels. Truncations of the N-terminus of KIR6.2 nearly eliminate transitions to interburst closed states without affecting the open or intraburst closed states, thus producing SUR1/DeltaNKIR6.2 channels with an extremely high open probability in the absence of nucleotides. These channels have a decrease apparent ATP-sensitivity which is consistent with the involvement of the N-terminus in a transition to an interburst closed state that preferentially binds inhibitory ATP. Mutations in both the N- and proximal C-termini of KIR6.2 can synergistically attenuate the ATP-inhibition. The results identify the N-terminus of KIR6.2 as a determinant of the interburst kinetics of KATP channels and suggest that the two cytoplasmic domains of KIR6.2 participate in ATP-inhibitory gating through distinct mechanisms.  相似文献   

20.
KATP channels regulate insulin secretion by coupling β-cell metabolism to membrane excitability. These channels are comprised of a pore-forming Kir6.2 tetramer which is enveloped by four regulatory SUR1 subunits. ATP acts on Kir6.2 to stabilize the channel closed state while ADP (coordinated with Mg2+) activates channels via the SUR1 domains. Aberrations in nucleotide-binding or in coupling binding to gating can lead to hyperinsulinism or diabetes. Here, we report a case of diabetes in a 7-mo old child with compound heterozygous mutations in ABCC8 (SUR1[A30V] and SUR1[G296R]). In unison, these mutations lead to a gain of KATP channel function, which will attenuate the β-cell response to increased metabolism and will thereby decrease insulin secretion. 86Rb+ flux assays on COSm6 cells coexpressing the mutant subunits (to recapitulate the compound heterozygous state) show a 2-fold increase in basal rate of 86Rb+ efflux relative to WT channels. Experiments on excised inside-out patches also reveal a slight increase in activity, manifested as an enhancement in stimulation by MgADP in channels expressing the compound heterozygous mutations or homozygous G296R mutation. In addition, the IC50 for ATP inhibition of homomeric A30V channels was increased ~6-fold, and was increased ~3-fold for both heteromeric A30V+WT channels or compound heterozygous (A30V +G296R) channels. Thus, each mutation makes a mechanistically distinct contribution to the channel gain-of-function that results in neonatal diabetes, and which we predict may contribute to diabetes in related carrier individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号