首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated atmospheric CO2 concentration (eCa) might reduce forest water‐use, due to decreased transpiration, following partial stomatal closure, thus enhancing water‐use efficiency and productivity at low water availability. If evapotranspiration (Et) is reduced, it may subsequently increase soil water storage (ΔS) or surface runoff (R) and drainage (Dg), although these could be offset or even reversed by changes in vegetation structure, mainly increased leaf area index (L). To understand the effect of eCa in a water‐limited ecosystem, we tested whether 2 years of eCa (~40% increase) affected the hydrological partitioning in a mature water‐limited Eucalyptus woodland exposed to Free‐Air CO2 Enrichment (FACE). This timeframe allowed us to evaluate whether physiological effects of eCa reduced stand water‐use irrespective of L, which was unaffected by eCa in this timeframe. We hypothesized that eCa would reduce tree‐canopy transpiration (Etree), but excess water from reduced Etree would be lost via increased soil evaporation and understory transpiration (Efloor) with no increase in ΔS, R or Dg. We computed Et, ΔS, R and Dg from measurements of sapflow velocity, L, soil water content (θ), understory micrometeorology, throughfall and stemflow. We found that eCa did not affect Etree, Efloor, ΔS or θ at any depth (to 4.5 m) over the experimental period. We closed the water balance for dry seasons with no differences in the partitioning to R and Dg between Ca levels. Soil temperature and θ were the main drivers of Efloor while vapour pressure deficit‐controlled Etree, though eCa did not significantly affect any of these relationships. Our results suggest that in the short‐term, eCa does not significantly affect ecosystem water‐use at this site. We conclude that water‐savings under eCa mediated by either direct effects on plant transpiration or by indirect effects via changes in L or soil moisture availability are unlikely in water‐limited mature eucalypt woodlands.  相似文献   

2.
Elevated atmospheric carbon dioxide (Ca) usually reduces stomatal conductance, but the effects on plant transpiration in the field are not well understood. Using constant‐power sap flow gauges, we measured transpiration from Quercus myrtifolia Willd., the dominant species of the Florida scrub‐oak ecosystem, which had been exposed in situ to elevated Ca (350 µmol mol ? 1 above ambient) in open‐top chambers since May 1996. Elevated Ca reduced average transpiration per unit leaf area by 37%, 48% and 49% in March, May and October 2000, respectively. Temporarily reversing the Ca treatments showed that at least part of the reduction in transpiration was an immediate, reversible response to elevated Ca. However, there was also an apparent indirect effect of Ca on transpiration: when transpiration in all plants was measured under common Ca, transpiration in elevated Ca‐grown plants was lower than that in plants grown in normal ambient Ca. Results from measurements of stomatal conductance (gs), leaf area index (LAI), canopy light interception and correlation between light and gs indicated that the direct, reversible Ca effect on transpiration was due to changes in gs caused by Ca, and the indirect effect was caused mainly by greater self‐shading resulting from enhanced LAI, not from stomatal acclimation. By reducing light penetration through the canopy, the enhanced self‐shading at elevated Ca decreased stomatal conductance and transpiration of leaves at the middle and bottom of canopy. This self‐shading mechanism is likely to be important in ecosystems where LAI increases in response to elevated Ca.  相似文献   

3.
Stomatal conductance of plants exposed to elevated CO2 is often reduced. Whether this leads to water savings in tall forest‐trees under future CO2 concentrations is largely unknown but could have significant implications for climate and hydrology. We used three different sets of measurements (sap flow, soil moisture and canopy temperature) to quantify potential water savings under elevated CO2 in a ca. 35 m tall, ca. 100 years old mixed deciduous forest. Part of the forest canopy was exposed to 540 ppm CO2 during daylight hours using free air CO2 enrichment (FACE) and the Swiss Canopy Crane (SCC). Across species and a wide range of weather conditions, sap flow was reduced by 14% in trees subjected to elevated CO2, yielding ca. 10% reduction in evapotranspiration. This signal is likely to diminish as atmospheric feedback through reduced moistening of the air comes into play at landscape scale. Vapour pressure deficit (VPD)‐sap flow response curves show that the CO2 effect is greatest at low VPD, and that sap flow saturation tends to occur at lower VPD in CO2‐treated trees. Matching stomatal response data, the CO2 effect was largely produced by Carpinus and Fagus, with Quercus contributing little. In line with these findings, soil moisture at 10 cm depth decreased at a slower rate under high‐CO2 trees than under control trees during rainless periods, with a reversal of this trend during prolonged drought when CO2‐treated trees take advantage from initial water savings. High‐resolution thermal images taken at different heights above the forest canopy did detect reduced water loss through altered energy balance only at <5 m distance (0.44 K leaf warming of CO2‐treated Fagus trees). Short discontinuations of CO2 supply during morning hours had no measurable canopy temperature effects, most likely because the stomatal effects were small compared with the aerodynamic constraints in these dense, broad‐leaved canopies. Hence, on a seasonal basis, these data suggest a <10% reduction in water consumption in this type of forest when the atmosphere reaches 540% ppm CO2.  相似文献   

4.
Wetlands evapotranspire more water than other ecosystems, including agricultural, forest and grassland ecosystems. However, the effects of elevated atmospheric carbon dioxide (CO2) concentration (Ca) on wetland evapotranspiration (ET) are largely unknown. Here, we present data on 12 years of measurements of ET, net ecosystem CO2 exchange (NEE), and ecosystem water use efficiency (EWUE, i.e. NEE/ET) at 13:00–15:00 hours in July and August for a Scirpus olneyi (C3 sedge) community and a Spartina patens (C4 grass) community exposed to ambient and elevated (ambient+340 μmol mol?1) Ca in a Chesapeake Bay wetland. Although a decrease in stomatal conductance at elevated Ca in the S. olneyi community was counteracted by an increase in leaf area index (LAI) to some extend, ET was still reduced by 19% on average over 12 years. In the S. patens community, LAI was not affected by elevated Ca and the reduction of ET was 34%, larger than in the S. olneyi community. For both communities, the relative reduction in ET by elevated Ca was directly proportional to precipitation due to a larger reduction in stomatal conductance in the control plants as precipitation decreased. NEE was stimulated about 36% at elevated Ca in the S. olneyi community but was not significantly affected by elevated Ca in S. patens community. A negative correlation between salinity and precipitation observed in the field indicated that precipitation affected ET through altered salinity and interacted with growth Ca. This proposed mechanism was supported by a greenhouse study that showed a greater Ca effect on ET in controlled low salinity conditions compared with high salinity. In spite of the differences between the two communities in their responses to elevated Ca, EWUE was increased about 83% by elevated Ca in both the S. olneyi and S. patens communities. These findings suggest that rising Ca could have significant impacts on the hydrologic cycles of coastal wetlands.  相似文献   

5.
Investigating the many internal feedbacks within the climate system is a vital component of the effort to quantify the full effects of future anthropogenic climate change. The stomatal apertures of plants tend to close and decrease in number under elevated CO2 concentrations, increasing water‐use efficiency (WUE) and reducing canopy evapotranspiration. Experimental and modelling studies reveal huge variations in these changes such that the warming associated with reduced evapotranspiration (known as physiological forcing) is neither well understood or constrained. Palaeo‐observations of changes in stomatal response and plant WUE under rising CO2 might be used to better understand the processes underlying the physiological forcing feedback and to link measured changes in plant WUE to a specific physiological change in stomata. Here we use time series of tree ring (Pinus sylvestris L.) δ13C and subfossil leaf (Betula nana L.) measurements of stomatal density and geometry to derive records of changes in intrinsic water‐use efficiency (iWUE) and maximum stomatal conductance in the Boreal zone of northern Finland and Sweden. We investigate the rate of change in both proxies, over the recent past. The independent lines of evidence from these two different Boreal species indicate increased iWUE and reduced maximum stomatal conductance of similar magnitude from preindustrial times (ca. ad 1850) to around ad 1970. After this maximum stomatal conductance continues to decrease to ad 2000 in B. nana but iWUE in P. sylvestris reaches a plateau. We suggest that northern boreal P. sylvestris might have reached a threshold in its ability to increase WUE as CO2 rises.  相似文献   

6.
It is a matter of debate if there is a direct (short‐term) effect of elevated atmospheric CO2 concentration (Ca) on plant respiration in the dark. When Ca doubles, some authors found no (or only minor) changes in dark respiration, whereas most studies suggest a respiratory inhibition of 15–20%. The present study shows that the measurement artefacts – particularly leaks between leaf chamber gaskets and leaf surface, CO2 memory and leakage effects of gas exchange systems as well as the water vapour (‘water dilution’) effect on DCO2 measurement caused by transpiration – may result in larger errors than generally discussed. A gas exchange system that was used in three different ways – as a closed system in which Ca increased continuously from 200 to 4200 mmol (CO2) mol‐1 (air) due to respiration of the enclosed leaf; as an intermittently closed system that was repeatedly closed and opened during Ca periods of either 350 or 2000 mmol mol‐1, and as an open system in which Ca varied between 350 and 2000 mmol mol‐1– is described. In control experiments (with an empty leaf chamber), the respective system characteristics were evaluated carefully. When all relevant system parameters were taken into account, no effects of short‐term changes in CO2 on dark CO2 efflux of bean and poplar leaves were found, even when Ca increased to 4200 mmol mol‐1. It is concluded that the leaf respiration of bean and poplar is not directly inhibited by elevated atmospheric CO2.  相似文献   

7.
Abstract For two species of oak, we determined whether increasing atmospheric CO2 concentration (Ca) would decrease leaf mitochondrial respiration (R) directly, or indirectly owing to their growth in elevated Ca, or both. In particular, we tested whether acclimatory decreases in leaf‐Rubisco content in elevated Ca would decrease R associated with its maintenance. This hypothesis was tested in summer 2000 on sun and shade leaves of Quercus myrtifolia Willd. and Quercus geminata Small. We also measured R on five occasions between summer 1999 and 2000 on leaves of Q. myrtifolia. The oaks were grown in the field for 4 years, in either current ambient or elevated (current ambient + 350 µmol mol?1) Ca, in open‐top chambers (OTCs). For Q. myrtifolia, an increase in Ca from 360 to 710 µmol mol?1 had no direct effect on R at any time during the year. In April 1999, R in young Q. myrtifolia leaves was significantly higher in elevated Ca—the only evidence for an indirect effect of growth in elevated Ca. Leaf R was significantly correlated with leaf nitrogen (N) concentration for the sun and shade leaves of both the species of oak. Acclimation of photosynthesis in elevated Ca significantly reduced maximum RuBP‐saturated carboxylation capacity (Vc max) for both the sun and shade leaves of only Q. geminata. However, we estimated that only 11–12% of total leaf N was invested in Rubisco; consequently, acclimation in this plant resulted in a small effect on N and an insignificant effect on R. In this study measurements of respiration and photosynthesis were made on material removed from the field; this procedure had no effect on gas exchange properties. The findings of this study were applicable to R expressed either per unit leaf area or unit dry weight, and did not support the hypothesis that elevated Ca decreases R directly, or indirectly owing to acclimatory decreases in Rubisco content.  相似文献   

8.
Rising atmospheric concentrations of CO2 (Ca) can reduce stomatal conductance and transpiration rate in trees, but the magnitude of this effect varies considerably among experiments. The theory of optimal stomatal behaviour predicts that the ratio of photosynthesis to transpiration (instantaneous transpiration efficiency, ITE) should increase in proportion to Ca. We hypothesized that plants regulate stomatal conductance optimally in response to rising Ca. We tested this hypothesis with data from young Eucalyptus saligna Sm. trees grown in 12 climate‐controlled whole‐tree chambers for 2 years at ambient and elevated Ca. Elevated Ca was ambient + 240 ppm, 60% higher than ambient Ca. Leaf‐scale gas exchange was measured throughout the second year of the study and leaf‐scale ITE increased by 60% under elevated Ca, as predicted. Values of leaf‐scale ITE depended strongly on vapour pressure deficit (D) in both CO2 treatments. Whole‐canopy CO2 and H2O fluxes were also monitored continuously for each chamber throughout the second year. There were small differences in D between Ca treatments, which had important effects on values of canopy‐scale ITE. However, when Ca treatments were compared at the same D, canopy‐scale ITE was consistently increased by 60%, again as predicted. Importantly, leaf and canopy‐scale ITE were not significantly different, indicating that ITE was not scale‐dependent. Observed changes in transpiration rate could be explained on the basis that ITE increased in proportion to Ca. The effect of elevated Ca on photosynthesis increased with rising D. At high D, Ca had a large effect on photosynthesis and a small effect on transpiration rate. At low D, in contrast, there was a small effect of Ca on photosynthesis, but a much larger effect on transpiration rate. If shown to be a general response, the proportionality of ITE with Ca will allow us to predict the effects of Ca on transpiration rate.  相似文献   

9.
Stands of Scirpus olneyi, a native saltmarsh sedge with C3 photosynthesis, had been exposed to normal ambient and elevated atmospheric CO2 concentrations (Ca) in their native habitat since 1987. The objective of this investigation was to characterize the acclimation of photosynthesis of Scirpus olneyi stems, the photosynthesizing organs of this species, to long-term elevated Ca treatment in relation to the concentrations of Rubisco and non-structural carbohydrates. Measurements were made on intact stems in the Held under existing natural conditions and in the laboratory under controlled conditions on stems excised in the field early in the morning. Plants grown at elevated Ca had a significantly higher (30–59%) net CO2 assimilation rate (A) than those grown at ambient Ca when measurements were performed on excised stems at the respective growth Ca. However, when measurements were made at normal ambient Ca, A was smaller (45–53%) in plants grown at elevated Ca than in those grown at ambient Ca. The reductions in A at normal ambient Ca, carboxylation efficiency and in situ carboxylase activity were caused by a decreased Rubisco concentration (30–58%) in plants grown at elevated Ca; these plants also contained less soluble protein (39–52%). The Rubisco content was 43 to 58% of soluble protein, and this relationship was not significantly altered by the growth CO2 concentrations. The Rubisco activation state increased slightly, but the in situ carboxylase activity decreased substantially in plants grown at elevated Ca. When measurements were made on intact stems in the field, the elevated Ca treatment caused a greater stimulation of,A (100%) and a smaller reduction in carboxylation efficiency (which was not statistically significant) than when measurements were made on excised stems in the laboratory. The possible reasons for this arc discussed. Plants grown at elevated Ca contained more non-structural carbohydrates (25–53%) than those grown at ambient Ca. Plants grown at elevated Ca appear to have sufficient sink capacity to utilize the additional carbohydrates formed during photosynthesis. Overall, our results are in agreement with the hypothesis that elevated Ca leads to an increased carbohydrate concentration and the ensuing acclimation of the photo-synthetic apparatus in C3 plants results in a reduction in the protein complement, especially Rubisco, which reduces the photosynthetic capacity in plants grown at elevated Ca, relative to plants grown at normal ambient Ca. Nevertheless, when compared at their respective growth Ca, Scirpus olneyi plants grown at elevated Ca in their native habitat maintained a substantially higher rate of photosynthesis than those grown at normal ambient Ca even after 8 years of growth at elevated Ca.  相似文献   

10.
We report the results of a 2‐year study of effects of the elevated (current ambient plus 350 μmol CO2 mol?1) atmospheric CO2 concentration (Ca) on net ecosystem CO2 exchange (NEE) of a scrub–oak ecosystem. The measurements were made in open‐top chambers (OTCs) modified to function as open gas‐exchange systems. The OTCs enclosed samples of the ecosystem (ca. 10 m2 surface area) that had regenerated after a fire, 5 years before, in either current ambient or elevated Ca. Throughout the study, elevated Ca increased maximum NEE (NEEmax) and the apparent quantum yield of the NEE (φNEE) during the photoperiod. The magnitude of the stimulation of NEEmax, expressed per unit ground area, was seasonal, rising from 50% in the winter to 180% in the summer. The key to this stimulation was effects of elevated Ca, and their interaction with the seasonal changes in the environment, on ecosystem leaf area index, photosynthesis and respiration. The separation of these factors was difficult. When expressed per unit leaf area the stimulation of the NEEmax ranged from 7% to 60%, with the increase being dependent on increasing soil water content (Wsoil). At night, the CO2 effluxes from the ecosystem (NEEnight) were on an average 39% higher in elevated Ca. However, the increase varied between 6% and 64%, and had no clear seasonality. The partitioning of NEEnight into its belowground (Rbelow) and aboveground (Rabove) components was carried out in the winter only. A 35% and 27% stimulation of NEEnight in December 1999 and 2000, respectively, was largely due to a 26% and 28% stimulation of Rbelow in the respective periods, because Rbelow constituted ca. 87% of NEEnight. The 37% and 42% stimulation of Rabove in December 1999 and 2000, respectively, was less than the 65% and 80% stimulation of the aboveground biomass by elevated Ca at these times. An increase in the relative amount of the aboveground biomass in woody tissue, combined with a decrease in the specific rate of stem respiration of the dominant species Quercus myrtifolia in elevated Ca, was responsible for this effect. Throughout this study, elevated Ca had a greater effect on carbon uptake than on carbon loss, in terms of both the absolute flux and relative stimulation. Consequently, for this scrub–oak ecosystem carbon sequestration was greater in the elevated Ca during this 2‐year study period.  相似文献   

11.
A spectrum of models that estimate assimilation rate A from intercellular carbon dioxide concentration (Ci) and measured stomatal conductance to CO2 (gc) were investigated using leaf‐level gas exchange measurements. The gas exchange measurements were performed in a uniform loblolly pine stand (Pinus taeda L.) using the Free Air CO2 Enrichment (FACE) facility under ambient and elevated atmospheric CO2 for 3 years. These measurements were also used to test a newly proposed framework that combines basic properties of the A–Ci curve with a Fickian diffusion transport model to predict the relationship between Ci/Ca and gc, where Ca is atmospheric carbon dioxide concentration. The widely used Ball–Berry model and five other models as well as the biochemical model proposed by Farquhar et al. (1980) were also reformulated to express variations in Ci/Ca as a function of their corresponding driving mechanisms. To assess the predictive capabilities of these approaches, their respective parameters were estimated from independent measurements of long‐term stable carbon isotope determinations (δ13C), meteorological variables, and ensemble ACi curves. All eight approaches reproduced the measured A reasonably well, in an ensemble sense, from measured water vapour conductance and modeled Ci/Ca. However, the scatter in the instantaneous A estimates was sufficiently large for both ambient and elevated Ca to suggest that other transient processes were not explicitly resolved by all eight parameterizations. An important finding from our analysis is that added physiological complexity in modeling Ci/Ca (when gc is known) need not always translate to increased accuracy in predicting A. Finally, the broader utility of these approaches to estimate assimilation and net ecosystem exchange is discussed in relation to elevated atmospheric CO2.  相似文献   

12.
Maize, in rotation with soybean, forms the largest continuous ecosystem in temperate North America, therefore changes to the biosphere‐atmosphere exchange of water vapor and energy of these crops are likely to have an impact on the Midwestern US climate and hydrological cycle. As a C4 crop, maize photosynthesis is already CO2‐saturated at current CO2 concentrations ([CO2]) and the primary response of maize to elevated [CO2] is decreased stomatal conductance (gs). If maize photosynthesis is not stimulated in elevated [CO2], then reduced gs is not offset by greater canopy leaf area, which could potentially result in a greater ET reduction relative to that previously reported in soybean, a C3 species. The objective of this study is to quantify the impact of elevated [CO2] on canopy energy and water fluxes of maize (Zea mays). Maize was grown under ambient and elevated [CO2] (550 μmol mol?1 during 2004 and 2006 and 585 μmol mol?1 during 2010) using Free Air Concentration Enrichment (FACE) technology at the SoyFACE facility in Urbana, Illinois. Maize ET was determined using a residual energy balance approach based on measurements of sensible (H) and soil heat fluxes, and net radiation. Relative to control, elevated [CO2] decreased maize ET (7–11%; P < 0.01) along with lesser soil moisture depletion, while H increased (25–30 W m?2; P < 0.01) along with higher canopy temperature (0.5–0.6 °C). This reduction in maize ET in elevated [CO2] is approximately half that previously reported for soybean. A partitioning analysis showed that transpiration contributed less to total ET for maize compared to soybean, indicating a smaller role of stomata in dictating the ET response to elevated [CO2]. Nonetheless, both maize and soybean had significantly decreased ET and increased H, highlighting the critical role of elevated [CO2] in altering future hydrology and climate of the region that is extensively cropped with these species.  相似文献   

13.
The mid-day responses of wheat ear CO2 and water vapour exchange to full-season CO2 enrichment were investigated using a Free-Air CO2 Enrichment (FACE) apparatus. Spring wheat [Triticum aestivum (L). cv. Yecora Rojo] was grown in two experiments under ambient and elevated atmospheric CO2 (Ca) concentrations (approximately 370 μ mol mol 1 and 550 μ mol mol 1, respectively) combined first with two irrigation (Irr) schemes (Wet: 100% and Dry: 50% replacement of evapotranspiration) and then with two levels of nitrogen (N) fertilization (High: 350, Low: 70 kg ha 1 N). Blowers were used for Ca enrichment. Ambient Ca plots were exposed to blower induced winds as well the Ca × N but not in the Ca × Irr experiment. The net photosynthesis for the ears was increased by 58% and stomatal conductance (gs) was decreased by 26% due to elevated Ca under ample water and N supply when blowers were applied to both Ca treatments. The use of blowers in the Ca-enriched plots only during the Ca × Irr experiment (blower effect) and Low N supply restricted the enhancement of net photosynthesis of the ear due to higher Ca. In the latter case, the increase of net photosynthesis of the ear amounted to 26%. The decrease in gs caused by higher Ca was not affected by the blower effect and N treatment. The mid-day enhancement of net photosynthesis due to elevated Ca was higher for ears than for flag leaves and this effect was most pronounced under ample water and N supply. The contribution of ears to grain filling is therefore likely to increase in higher Ca environments in the future. In the comparison between Wet and Dry, the higher Ca did not alter the response of net photosynthesis of the ear and gs to Irr. However, Ca enrichment increased the drought tolerance of net photosynthesis of the glume and delayed the increase of the awn portion of net photosynthesis of the ear during drought. Therefore, the role of awns for maintaining high net photosynthesis of the ear under drought may decrease when Ca increases.  相似文献   

14.
15.
The effect of elevated atmospheric CO2 concentration (Ca) on soil carbon and nitrogen accumulation and soil microbial biomass and activity in a native Florida scrub oak community was studied. The plant community, dominated by Quercus myrtifolia Willd. and Q. geminata Small, was exposed for 2 years to elevated Ca in open‐top chambers. Buried subsoil bags were retrieved after 1 year of exposure to elevated Ca. In addition, soil cores were taken twice from the chambers within two weeks in July 1998 (the first after a long dry spell and the second after 25 mm of rainfall) and divided into rhizosphere and bulk soil. Soil organic matter accumulation (excluding roots) into the buried subsoil bags was lower in elevated than in ambient Ca. Concentrations of soluble carbon and ninhydrin‐reactive nitrogen (Nninh) in the rhizosphere soil were reduced by elevated Ca for the first sampling date and unaffected for the second sampling date. Microbial activity, measured as fluorescein diacetate (FDA) hydrolysis, decreased in elevated Ca for the first sampling date. Microbial biomass carbon and nitrogen in the bulk soil were unaffected by elevated Ca. There was no effect of elevated Ca on bacterial numbers in the rhizosphere.  相似文献   

16.
The effect of elevated atmospheric CO2 concentration (Ca) on the aboveground biomass of three oak species, Quercus myrtifolia, Q. geminata, and Q. chapmanii, was estimated nondestructively using allometric relationships between stem diameter and aboveground biomass after four years of experimental treatment in a naturally fire‐regenerated scrub‐oak ecosystem. After burning a stand of scrub‐oak vegetation, re‐growing plants were exposed to either current ambient (379 µL L?1 CO2) or elevated (704 µL L?1 CO2) Ca in 16 open‐top chambers over a four‐year period, and measurements of stem diameter were carried out annually on all oak shoots within each chamber. Elevated Ca significantly increased aboveground biomass, expressed either per unit ground area or per shoot; elevated Ca had no effect on shoot density. The relative effect of elevated Ca on aboveground biomass increased each year of the study from 44% (May 96–Jan 97), to 55% (Jan 97–Jan 98), 66% (Jan 98–Jan 99), and 75% (Jan 99–Jan 00). The effect of elevated Ca was species specific: elevated Ca significantly increased aboveground biomass of the dominant species, Q. myrtifolia, and tended to increase aboveground biomass of Q. chapmanii, but had no effect on aboveground biomass of the subdominant, Q. geminata. These results show that rising atmospheric CO2 has the potential to stimulate aboveground biomass production in ecosystems dominated by woody species, and that species‐specific growth responses could, in the long term, alter the composition of the scrub‐oak community.  相似文献   

17.
The magnitude of changes in carboxylation capacity in dominant plant species under long‐term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation from the atmosphere. We analyzed field CO2 response curves of 16 C3 species of different plant growth forms in favorable growth conditions in four free‐air CO2 enrichment (FACE) experiments in a pine and deciduous forest, a grassland and a desert. Among species and across herb, tree and shrub growth forms there were significant enhancements in CO2 assimilation (A) by +40±5% in elevated pCa (49.5–57.1 Pa), although there were also significant reductions in photosynthetic capacity in elevated pCa in some species. Photosynthesis at a common pCa (Aa) was significantly reduced in five species growing under elevated pCa, while leaf carboxylation capacity (Vcmax) was significantly reduced by elevated pCa in seven species (change of ?19±3% among these species) across different growth forms and FACE sites. Adjustments in Vcmax with elevated pCa were associated with changes in leaf N among species, and occurred in species with the highest leaf N. Elevated pCa treatment did not affect the mass‐based relationships between A or Vcmax and N, which differed among herbs, trees and shrubs. Thus, effects of elevated pCa on leaf C assimilation and carboxylation capacity occurred largely through changes in leaf N, rather than through elevated pCa effects on the relationships themselves. Maintenance of leaf carboxylation capacity among species in elevated pCa at these sites depends on maintenance of canopy N stocks, with leaf N depletion associated with photosynthetic capacity adjustments. Since CO2 responses can only be measured experimentally on a small number of species, understanding elevated CO2 effects on canopy Nm and Na will greatly contribute to an ability to model responses of leaf photosynthesis to atmospheric CO2 in different species and plant growth forms.  相似文献   

18.
Soil water deficits are likely to influence the response of crop growth and yield to changes in atmospheric CO2 concentrations (Ca), but the extent of this influence is uncertain. To study the interaction of water deficits and Ca on crop growth, the ecosystem simulation model ecosys was tested with data for diurnal gas exchange and seasonal wheat growth measured during 1993 under high and low irrigation at Ca= 370 and 550 μmol mol?1 in the Free Air CO2 Enrichment (FACE) experiment near Phoenix, AZ. The model, supported by the data from canopy gas exchange enclosures, indicated that under high irrigation canopy conductance (gc) at Ca= 550 μmol mol?1 was reduced to about 0.75 that at Ca= 370 μmol mol?1, but that under low irrigation, gc was reduced less. Consequently when Ca was increased from 370 to 550 μmol mol?1, canopy transpiration was reduced less, and net CO2 fixation was increased more, under low irrigation than under high irrigation. The simulated effects of Ca and irrigation on diurnal gas exchange were also apparent on seasonal water use and grain yield. Simulated vs. measured seasonal water use by wheat under high irrigation was reduced by 6% vs. 4% at Ca= 550 vs. 370 μmol mol?1 but that under low irrigation was increased by 3% vs. 5%. Simulated vs. measured grain yield of wheat under high irrigation was increased by 16% vs. 8%, but that under low irrigation was increased by 38% vs. 21%. In ecosys, the interaction between Ca and irrigation on diurnal gas exchange, and hence on seasonal crop growth and water use, was attributed to a convergence of simulated gc towards common values under both Ca as canopy turgor declined. This convergence caused transpiration to decrease comparatively less, but CO2 fixation to increase comparatively more, under high vs. low Ca. Convergence of gc was in turn attributed to improved turgor maintenance under elevated Ca caused by greater storage C concentrations in the leaves, and by greater rooting density in the soil.  相似文献   

19.
The carbon isotope ratio (δ13C) in tree rings is commonly used to derive estimates of the assimilation‐to‐stomatal conductance rate of trees, that is, intrinsic water‐use efficiency (iWUE). Recent studies have observed increased iWUE in response to rising atmospheric CO2 concentrations (Ca), in many different species, genera and biomes. However, increasing rates of iWUE vary widely from one study to another, likely because numerous covarying factors are involved. Here, we quantified changes in iWUE of two widely distributed boreal conifers using tree samples from a forest inventory network that were collected across a wide range of growing conditions (assessed using the site index, SI), developmental stages and stand histories. Using tree‐ring isotopes analysis, we assessed the magnitude of increase in iWUE after accounting for the effects of tree size, stand age, nitrogen deposition, climate and SI. We also estimated how growth conditions have modulated tree physiological responses to rising Ca. We found that increases in tree size and stand age greatly influenced iWUE. The effect of Ca on iWUE was strongly reduced after accounting for these two variables. iWUE increased in response to Ca, mostly in trees growing on fertile stands, whereas iWUE remained almost unchanged on poor sites. Our results suggest that past studies could have overestimated the CO2 effect on iWUE, potentially leading to biased inferences about the future net carbon balance of the boreal forest. We also observed that this CO2 effect is weakening, which could affect the future capacity of trees to resist and recover from drought episodes.  相似文献   

20.
Acclimation of photosynthesis and respiration in shoots and ecosystem carbon dioxide fluxes to rising atmospheric carbon dioxide concentration (C a ) was studied in a brackish wetland. Open top chambers were used to create test atmospheres of normal ambient and elevated C a (=normal ambient + 34 Pa CO2) over mono-specific stands of the C3 sedge Scirpus olneyi, the dominant C3 species in the wetland ecosystem, throughout each growing season since April of 1987. Acclimation of photosynthesis and respiration were evaluated by measurements of gas exchange in excised shoots. The impact of elevated C a on the accumulation of carbon in the ecosystem was determined by ecosystem gas exchange measurements made using the open top chamber as a cuvette.Elevated C a increased carbohydrate and reduced Rubisco and soluble protein concentrations as well as photosynthetic capacity(A) and dark respiration (R d ; dry weight basis) in excised shoots and canopies (leaf area area basis) of Scirpus olneyi. Nevertheless, the rate of photosynthesis was stimulated 53% in shoots and 30% in canopies growing in elevated C a compared to normal ambient concentration. Elevated C a inhibited R d measured in excised shoots (–19 to –40%) and in seasonally integrated ecosystem respiration (R e ; –36 to –57%). Growth of shoots in elevated C a was stimulated 14–21%, but this effect was not statistically significant at peak standing biomass in midseason. Although the effect of elevated C a on growth of shoots was relatively small, the combined effect of increased number of shoots and stimulation of photosynthesis produced a 30% stimulation in seasonally integrated gross primary production (GPP). The stimulation of photosynthesis and inhibition of respiration by elevated C a increased net ecosystem production (NEP=GPP–R e ) 59% in 1993 and 50% in 1994. While this study consistently showed that elevated C a produced a significant increase in NEP, we have not identified a correspondingly large pool of carbon below ground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号