首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
Interferon production stimulated by the active substance (neutral fraction) of the capsular polysaccharide of Klebsiella pneumoniae (neutral CPS-K) in BCG-infected mice was compared with that by bacterial lipopolysaccharide (LPS). Prior infection with BCG increased the responsiveness of mice to the lethal effect of neutral CPS-K as well as to that of LPS. Associated with this, BCG-infected mice showed a markedly enhanced ability to produce interferon after stimulation not only by LPS but also by neutral CPS-K. In addition, a cytotoxic factor (cytotoxin) was found to be released in the serum of BCG-infected mice after injection of these inducers. The kinetics of production of interferon and cytotoxin stimulated by neutral CPS-K were very similar to those stimulated by LPS. The time pattern of cytotoxin production was not in parallel with that of interferon production. Interferon reached a peak 2 hr and cytotoxin 3 hr after injection with these inducers. Interferon and cytotoxin produced by neutral CPS-K showed essentially the same stabilities to heating at 56 C and to treatment at pH 2 respectively as those produced by LPS. Interferon was inactivated by heating at 56 C more rapidly than cytotoxin. Cytotoxin was inactivated by treatment at pH 2 for 24 hr, whereas interferon activity was well preserved after this treatment. These results suggest that both activities are the result of different substances.  相似文献   

2.
Preincubation of human umbilical vein endothelial cell (EC) monolayers with 1 ng to 10 micrograms/ml lipopolysaccharide (LPS) increased the binding of T lymphocytes to EC. The effect was maximal at LPS concentrations of 0.1 to 10 micrograms/ml, and occurred with LPS derived from Escherichia coli (serotypes 0111:B4 and 0127:B8), Shigella flexneri (serotype 2a), Serratia marcescens (serotype 0:3), and Yersinia entercolitica (serotype 0:3). The increased binding appeared to be mediated primarily through an action on EC; preincubation of T cells rather than EC with LPS did not lead to enhanced binding. The onset of enhanced binding was very rapid, being observed after 2 to 3 min of preincubation and becoming maximal after 1 hr. EC were unresponsive to LPS after fixation with 2% paraformaldehyde-L-lysine-periodate and also when the LPS was incubated with EC at 4 degrees C. Enhanced binding was seen with lipid A and with LPS from Salmonella minnesota Re 595 (mainly lipid A) and was abolished by conjugation with polymyxin B. The observed increase in the binding of lymphocytes to EC exposed to LPS suggests that the lymphocytopenia induced by endotoxemia may result from augmentation of the adherence of lymphocytes to altered endothelium.  相似文献   

3.
Current evidence indicates that endogenously produced peptide cytokines, most notably TNF-alpha and IL-1, mediate the lethality of experimental endotoxemia. Because circulating serum levels of IFN-gamma can be detected soon after TNF-alpha and IL-1 in response to endotoxin, we investigated the role of IFN-gamma in endotoxin and TNF-alpha lethality. Specific neutralizing antibodies to murine TNF-alpha (anti-TNF-alpha Ab) or murine IFN gamma (anti-IFN-gamma Ab) produced in our laboratory protected mice against the lethality of Escherichia coli endotoxin (LPS) administered 6 h later. Serum IFN-gamma levels 2 h after i.v. LPS were lower in mice treated with anti-TNF-alpha Ab compared to mice that received nonimmune IgG (median less than 2.5 vs 3.0 U/ml, P2 less than 0.05). In contrast, serum TNF-alpha levels 1 h after i.v. LPS peaked more than fourfold higher in mice treated with anti-IFN-gamma Ab compared to controls (median greater than 6400 vs 1405 pg/ml, p2 less than 0.05). Doses of TNF-alpha (300 micrograms/kg) and IFN-gamma (50,000 U) which were well tolerated when given individually were synergistically lethal in combination (0% lethality vs 100% lethality, P2 less than 0.001), and were associated with higher serum levels of IL-6 than with either cytokine alone. Anti-IFN-gamma Ab provided complete protection against exogenous human rTNF-alpha at the LD100 dose (1400 micrograms/kg, p2 less than 0.001), and in fact prevented lethality at doses four- to fivefold greater than the LD100 human rTNF-alpha (up to 6000 micrograms/kg). We conclude that IFN-gamma is synergistic with TNF-alpha, is essential for the lethality of LPS and TNF-alpha, and may have modulating effects on the negative control of serum levels of TNF-alpha after LPS in mice.  相似文献   

4.
When CHO cells were treated either for 10 min at 45-45.5 degrees C or for 1 hr with 100 microM sodium arsenite (ARS) or for 2 hr with 20 micrograms/ml puromycin (PUR-20), they became thermotolerant to a heat treatment at 45-45.5 degrees C administered 4-14 hr later, with thermotolerance ratios at 10(-3) isosurvival of 4-6, 2-3.2, and 1.7, respectively. These treatments caused an increase in synthesis of HSP families (70, 87, and 110 kDa) relative to total protein synthesis. However, for a given amount of thermotolerance, the ARS and PUR-20 treatments induced 4 times more synthesis than the heat treatment. This decreased effectiveness of the ARS treatment may occur because ARS has been reported to stimulate minimal redistribution of HSP-70 to the nucleus and nucleolus. Inhibiting protein synthesis with cycloheximide (CHM, 10 micrograms/ml) or PUR (100 micrograms/ml) after the initial treatments greatly inhibited thermotolerance to 45-45.5 degrees C in all cases. However, for a challenge at 43 degrees C, thermotolerance was inhibited only for the ARS and PUR-20 treatments. CHM did not suppress heat-induced thermotolerance to 43 degrees C, which was the same as heat protection observed when CHM was added before and during heating at 43 degrees C without the initial heat treatment. These differences between the initial treatments and between 43 and 45 degrees C may possibly be explained by reports that show that heat causes more redistribution of HSP-70 to the nucleus and nucleolus than ARS and that redistribution of HSP-70 can occur during heating at 42 degrees C with or without the presence of CHM. Heating cells at 43 degrees C for 5 hr after thermotolerance had developed induced additional thermotolerance, as measured with a challenge at 45 degrees C immediately after heating at 43 degrees C. Compared to the nonthermotolerant cells, thermotolerance ratios were 10 for the ARS treatment and 8.5 for the initial heat treatment. Adding CHM (10 micrograms/ml) or PUR (100 micrograms/ml) to inhibit protein synthesis during heating at 43 degrees C did not greatly reduce this additional thermotolerance. If, however, protein synthesis was inhibited between the initial heat treatment and heating at 43 degrees C, protein synthesis was required during 43 degrees C for the development of additional thermotolerance to 45 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
When human neutrophils are incubated with LPS, they become primed for enhanced release of O2- in response to stimulation by FMLP. We investigated two aspects of LPS priming: 1) whether priming depends on secretion of TNF-alpha by monocytes present in neutrophil preparations, and 2) whether plasma is required for priming. Using plasma-Percoll gradients, we isolated neutrophils that contained only 0.1% monocytes. At 37 degrees C, these neutrophils were significantly primed by LPS (100 ng/ml) within 30 min. In contrast, LPS-treated monocytes required 60 min to secrete significant neutrophil-priming activity, the major component of which was TNF-alpha. Further, antibody against TNF-alpha failed to inhibit priming of neutrophils by LPS at 15, 30, and 45 min, and inhibited only 15% at 60 min. The results suggested that TNF-alpha or other factors from monocytes were not essential for priming of neutrophils by LPS. Neutrophils that had been washed free of plasma by centrifugation through 50% Percoll responded only weakly to LPS with respect to priming for enhanced O2- release and increased expression of alkaline phosphatase activity on the cell surface. Priming of washed neutrophils could be restored by adding back plasma (0.1 to 1.0%). This effect of plasma was not blocked by heating the plasma to 56 degrees C but was blocked at 100 degrees C. LPS priming could be blocked by polymyxin B, even in the presence of plasma. Thus, priming required both LPS and plasma. Neutrophils incubated with LPS in the absence of plasma were not primed by subsequent addition of plasma, but were primed by addition of plasma and LPS. Culture supernatants from neutrophils incubated with 20 ng/ml LPS in the absence of plasma failed to prime fresh neutrophils, but supernatants from neutrophils incubated with LPS in the presence of 1% plasma were able to prime fresh neutrophils. These results implied that neutrophils inactivated LPS and that plasma protected LPS from inactivation. Nevertheless, such inactivated LPS retained the ability to gel Limulus lysate at 10 pg/ml, and the ability to prime monocytes at 100 pg/ml. Thus, plasma prevented a neutrophil-specific inactivation of LPS.  相似文献   

6.
The interaction between radioiodinated lipopolysaccharide from Escherichia coli 0111:B4 (125I-LPS) and human peripheral-blood monocytes was studied. The association of 125I-LPS with monocytes at 37 degrees C appeared to depend on binding to the cell membrane with subsequent internalization of the molecule, and was not saturable with time (up to 2 h) or 125I-LPS concentration (up to 10 micrograms/ml). There was no apparent difference in the behaviour of unlabelled LPS and 125I-LPS with respect to monocyte association. 125I-LPS association with monocytes was inhibited by LPS and O-polysaccharide from E. coli 0111:B4 and Salmonella typhi 0901, but not by lipid A or polymyxin B. We propose that the mechanism of human monocyte stimulation by LPS involves polysaccharide-dependent binding to the cell membrane followed by internalization of the LPS molecule. We were unable to demonstrate a specific LPS receptor such as that found on murine B-lymphocytes.  相似文献   

7.
8.
Our previous studies indicate that bacterial lipopolysaccharide (LPS) enhances natural killer (NK) cell-mediated cytotoxicity and increases intracellular calcium (Ca2+) in hepatocytes. Calmodulin (CAM) regulates Ca2(+)-ATPase activity, intracellular Ca2+, and is also implicated in NK cell-mediated cytolysis. In the present work, the effects of LPS and CAM on Ca2(+)-ATPase and intracellular Ca2+ in human NK cells were studied by a combined technique of immunogold electron microscopy and ultracytochemistry. Peripheral blood mononuclear cells were treated with 100 micrograms/ml E. coli (0111:B4) LPS and/or 5 micrograms/ml CAM in RPMI 1640 medium at 37 degrees C for 1 or 4 hr. NK cells labeled with monoclonal anti-Leu-11a (CD16) antibody and colloidal gold-conjugated anti-mouse IgG were processed for cytochemical localization of Ca2(+)-ATPase and Ca2+. Ca2(+)-ATPase was localized in the plasma membrane of NK cells, and its activity was suppressed by LPS but was enhanced by CAM. However, no apparent changes in the enzyme reaction were observed when cells were exposed to CAM concomitantly with LPS or stimulated with LPS before CAM. Apparent reduction of the enzyme reaction was observed when LPS stimulation was preceded by CAM. Ca2(+)-ATPase reaction in mitochondria was observed only in NK cells exposed to CAM. Computer image analysis showed no changes in the intracellular Ca2+ in NK cells treated with LPS for 1 hr, whereas a significant increase in Ca2+ was found in cells exposed to LPS for 4 hr. The intracellular Ca2+ significantly decreased in NK cells treated with CAM or with a combination of LPS and CAM as compared to that of controls (p less than 0.05). The results indicate that CAM is capable of blocking or reversing the inhibitory effect of LPS on Ca2(+)-ATPase, and suggest that in human NK cells the plasma membrane-associated Ca2(+)-ATPase is responsible for extrusion of intracellular Ca2+.  相似文献   

9.
Angiotensin converting enzyme (ACE) is present on endothelial cells and plays a role in regulating blood pressure in vivo by converting angiotensin I to angiotensin II and metabolizing bradykinin. Since ACE activity is decreased in vivo in sepsis, the ability of lipopolysaccharide (LPS) to suppress endothelial cell ACE activity was tested by culturing human umbilical vein endothelial cells (HUVEC) for 0-72 hr with or without LPS and then measuring ACE activity. ACE activity in intact HUVEC monolayers incubated with LPS (10 micrograms/ml) decreased markedly with time and was inhibited by 33%, 71%, and 76% after 24 hr, 48 hr, and 72 hr, respectively, when compared with control, untreated cells. The inhibitory effect of LPS was partially reversible upon removal of the LPS and further incubation in the absence of LPS. The LPS-induced decrease in ACE activity was dependent on the concentrations of LPS (IC50 = 15 ng/ml at 24 hr) and was detectable at LPS concentrations as low as 1 ng/ml. That LPS decreased the Vmax of ACE in the absence of cytotoxicity and without a change in Km suggests that LPS decreased the amount of ACE present on the HUVEC cell membrane. While some LPS serotypes (Escherichia coli 0111:B4 and 055:B5, S. minnesota) were more potent inhibitors of ACE activity than others (E. coli 026:B6 and S. marcescens), all LPS serotypes tested were inhibitory. These finding suggest that LPS decreases endothelial ACE activity in septic patients; in turn, this decrease in ACE activity may decrease angiotensin II production and bradykinin catabolism and thus play a role in the pathogenesis of septic shock.  相似文献   

10.
During 4 hr after puromycin (PUR: 20 micrograms/ml) treatment, the synthesis of three major heat shock protein families (HSPs: Mr = 110,000, 87,000, and 70,000) was enhanced 1.5-fold relative to that of untreated cells, as studied by one-dimensional gel electrophoresis. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater. In parallel, thermotolerance was observed at 10(-3) isosurvival as a thermotolerance ratio (TTR) of either 2 or greater than 5 after heating at either 45.5 degrees C or 43 degrees C, respectively. However, thermotolerance was induced by only intermediate concentrations (3-30 micrograms/ml) of puromycin that inhibited protein synthesis by 15-80%; a high concentration of PUR (100 micrograms/ml) that inhibited protein synthesis by 95% did not induce either HSPs or thermotolerance. Also, thermotolerance was never induced by any concentration (0.01-10 micrograms/ml) of cycloheximide that inhibited protein synthesis by 5-94%. Furthermore, after PUR (20 micrograms/ml) treatment, the addition of cycloheximide (CHM: 10 micrograms/ml), at a concentration that reduces protein synthesis by 94%, inhibited both thermotolerance and synthesis of HSP families. Thus, thermotolerance induced by intermediate concentrations of PUR correlated with an increase in newly synthesized HSP families. This thermotolerance phenomenon was compared with another phenomenon termed heat resistance and observed when cells were heated at 43 degrees C in the presence of CHM or PUR immediately after a 2-hr pretreatment with CHM or PUR. Heat protection increased with inhibition of synthesis of both total protein and HSP families. Moreover, this heat protection decayed rapidly as the interval between pretreatment and heating increased to 1-2 hr, and did not have any obvious relationship to the synthesis of HSP families. Therefore, there are two distinctly different pathways for developing thermal resistance. The first is thermotolerance after intermediate concentrations of PUR treatment, and it requires incubation after treatment and apparently the synthesis of HSP families. The second is resistance to heat after CHM or PUR treatment immediately before and during heating at 43 degrees C, and it apparently does not require synthesis of HSP families. This second pathway not requiring the synthesis of HSP families also was observed by the increase in thermotolerance at 45.5 degrees C caused by heating at 43 degrees C after cells were incubated for 2-4 hr following pretreatment with an intermediate concentration of PUR.  相似文献   

11.
The results from a number of clinical and experimental studies have suggested that during endotoxemia, suppression of adrenocortical steroidogenesis may occur. We have examined the possibility that macrophages are the source of a factor that suppresses adrenocortical steroidogenesis. Resident and peptone-elicited peritoneal exudate macrophages (PEM) from C3HeB/FeJ mice were incubated for 4 hr at 37 degrees C in the presence or absence of T cell hybridoma-derived lymphokine (LK) that contained high concentrations of MAF activity (assessed by induction of nonspecific tumoricidal activity in PEM). The LK was removed by rinsing, and fresh medium was added, followed by Salmonella minnesota R595 LPS (final concentration 10 micrograms/ml). After 18 hr at 37 degrees C the PEM supernatants and control medium from flasks without cells were harvested and stored at -20 degrees C. Explanted rabbit adrenocortical cells in 96-well plates were exposed to 30 microliters of PEM supernatant or control medium and ACTH (10 or 100 mU/ml) in a final volume of 120 microliters for 3 consecutive days. The adrenocortical cell supernatants were harvested each day, followed by replenishment of medium, PEM supernatant, and ACTH. Fluorogenic steroid production in wells that received control medium or supernatants from PEM not treated with LPS was normal (0.22 microgram +/- 0.010 (SD) per 5 X 10(4) cells). However, as much as 75 to 95% suppression of steroidogenesis was observed in wells that received supernatants from PEM treated with LK and LPS, compared to 40% suppression in wells that received supernatant from PEM treated with LPS alone. Continued exposure (over 3 days) of adrenocortical cells to supernatants from LPS-treated PEM resulted in progressively decreasing response to ACTH. Comparable suppressive activity was observed in supernatants from LPS-treated bone marrow-derived macrophages. In further experiments, suppression was observed in wells that were pretreated (22 hr) with the appropriate PEM supernatant, and evidence was obtained that the suppressive activity was not due to carry-over LPS. Finally, results from control experiments demonstrated that suppressive PEM supernatants neither inactivate ACTH nor interfere with the assay of fluorogenic steroids. Thus, these results suggest that during endotoxemia, products from LPS-stimulated macrophages may suppress adrenocortical function.  相似文献   

12.
The incubation of zymosan, endotoxin, or immune aggregates with normal human serum activates a factor which induces release of histamine from autologous basophils. The reaction can be divided into two steps: in the first, complement must be activated and in the second, the histamine-releasing factor interacts with basophils. The generation of histamine-releasing activity in serum occurs at 17 to 37 degrees C but not at 0 degrees C, is inhibited by heating the serum at 56 degrees C for 30 min, or by the addition of EDTA to the serum. Once generated, the histamine-liberating activity is stable to heating at 56 degrees C for 30 min. Gel filtration of the activated serum demonstrated that this factor eluted in the same region as a factor with chemotactic activity. Both factors have a molecular weight of about 16,000 daltons and their activities were inhibited by antibody to human C5. This is therefore a pathway for histamine release by C5a where the activation of the basophil is unrelated to the membrane bound IgE.  相似文献   

13.
The fibrinogenolytic activity of purified tryptase from human lung mast cells   总被引:13,自引:0,他引:13  
The capacity of purified tryptase from human lung mast cells to metabolize human fibrinogen, fibrin, and plasminogen was evaluated. Tryptase (5 micrograms/ml) inactivated the thrombin-induced clotting activity of fibrinogen (100 micrograms/ml) with essentially similar t 1/2 values of 4.6 min in the absence of heparin and 5.8 min in the presence of heparin (20 micrograms/ml) that were not appreciably different than with lysine-Sepharose-purified plasmin (5 micrograms/ml). Fibrinogen treated with tryptase together with heparin lost all detectable clotting activity by 4 hr at 37 degrees C, whereas fibrinogen treated with tryptase alone resulted in destruction of only 80% of fibrinogen clotting equivalents after 16 hr. Tryptase alone was observed to cleave only the alpha-chains of fibrinogen by electrophoresis of tryptase-treated, denatured, and reduced fibrinogen in polyacrylamide gradient gels. Tryptase together with heparin cleaved first the alpha-chain and then the beta-chain, the latter cleavage corresponding to complete loss of fibrinogen clotting activity by 4 hr. No fibrinogen fragments with anticoagulant activity were generated by tryptase. In contrast, plasmin left no residual clotting activity after 4 hr of incubation and generated fibrinogen fragments with anticoagulant activity. Plasmin sequentially cleaved the alpha, beta, and gamma subunits of fibrinogen. Tryptase alone (6 micrograms/ml) or together with heparin (20 micrograms/ml) failed to activate plasminogen (0.6 mg/ml) after a 60-min incubation at 37 degrees C. Addition of urokinase to tryptase-treated or untreated plasminogen resulted in essentially identical plasmin activities (0.32 and 0.34 U/ml, respectively), indicating that tryptase neither activates nor destroys plasminogen. Tryptase (700 ng) also failed to substantially solubilize cross-linked fibrin (2.6 micrograms) or the corresponding amount of fibrinogen bound to plastic microtiter plates with or without heparin. The failure to solubilize fibrinogen and, possibly, fibrin is consistent with the observation that the apparent m.w. by SDS polyacrylamide gel electrophoresis of unreduced fibrinogen is not appreciably altered by prior treatment with tryptase, even though cleavage of alpha-and beta-chains is revealed after reduction. Fibrinogenolysis by tryptase complements other mast cell mediators with anticoagulant properties such as heparin and suggests a significant prevention of coagulation by activated mast cells.  相似文献   

14.
The ability of C fragments to induce IL-1 production in human monocytes was examined by using various approaches to carefully exclude the role of contaminating endotoxin. The presence of IL-1 activity in monocyte supernatants and lysates was assayed by the augmentation of PHA-induced proliferation of murine thymocytes. SRBC were opsonized with IgM rabbit antibodies and various human C components to prepare EAC reagents that contained less than 25 pg LPS/ml of EAC at 5 x 10(8) cells/ml. EAC1q, EAC4b, EAC4b2aoxy, EAC4b2aoxy C3b, EAC4b2aoxyC3bi, and EAC4b2aoxyC3d all failed to induce IL-1 production when incubated at 10- to 100-fold excess with adherent human monocytes. Similarly, LPS-free purified C3a, C5a, and C5a des Arg all showed no IL-1-inducing activities at concentrations up to 25 micrograms/ml. However, the same C5a preparations were active on human monocytes in the induction of chemotaxis, and C3a and C5a both induced skin-blueing in guinea pigs. Fragment Ba and Bb preparations purified by gel filtration chromatography contained approximately 100 pg LPS/micrograms Ba or Bb. These Ba and Bb preparations at 10 and 50 micrograms/ml, respectively, induced IL-1 production in the presence of 5 micrograms/ml polymyxin B (PMB). However, Ba and Bb preparations purified by affinity chromatography and HPLC contained lower levels of endotoxin contamination and displayed IL-1-inducing activities at Ba and Bb concentrations of 50 and 100 micrograms/ml, respectively, that were almost completely inhibited by PMB. To explore further the role of contaminating endotoxin, a Bb preparation was adsorbed with PMB-4B in the presence of a dialyzable detergent to remove LPS bound to the Bb. This LPS-free Bb preparation failed to induce IL-1 production while maintaining intact enzymatic activities. These results indicate that various solid phase or soluble C fragments, including C3b, iC3b, C3d, C3a, C5a, Ba or Bb do not induce IL-1 production in human monocytes in the absence of contaminating endotoxin.  相似文献   

15.
Intravenous injection of a low dose of Salmonella endotoxin (10 micrograms/kg bw) into rabbits results in an increase in the non-enzymatic fibrinolytic activity of blood at early stages of a pathological process followed by depression of this response at later stages of the pathology. At higher degrees of non-enzymatic fibrinolysis activation the morphological and ultrastructural changes in renal tissues caused by endotoxin injection are the least pronounced. Intravenous injection of heparin after injection of a lethal dose of Salmonella endotoxin (100-200 micrograms/kg) enhances non-enzymatic fibrinolysis activation and decreases the morphological and ultrastructural lesions in renal tissues.  相似文献   

16.
Cloning Inhibition Factor (CIF), an activity present in PHA or antigen stimulated lymphocyte culture supernatants, inhibited the cloning of HeLa cells when diluted 1:9 in HeLa culture medium. CIF was not detectable at 8 hr, was maximal at 24–48 hr, and declined with longer periods of lymphocyte culture. CIF production increased with lymphocyte concentration up to 1–2 × 106 lymphs/ml but plateaued at higher concentrations. At lower lymphocyte concentrations, more CIF activity was present when lymphocytes were cultured in 5% rather than 12% serum. PPD elicited similar CIF activity from either highly purified or unpurified lymphocytes. CIF activity was independent of HeLa medium serum concentration. It remained stable for 3–6 months at ?20 °C, but was inactivated by heating at 56 °C for 30 min. At a 1:9 dilution CIF was not cytocidal but produced cytopathic changes. CIF shares many properties with, and may be identical to, Proliferation Inhibitory Factor.  相似文献   

17.
The antigen-inducing ablastic antibody was found in the plasma of Trypanosoma letwsi-infected rats which were treated with high doses of hydrocortisone acetate.The antigen (ablastinogen) was demonstrated by immunizing normal rats with hydrocortisone treated, infected rat plasma (TIRP) and testing their antiserum for ablastic antibody. Plasma from either hydrocortisone treated, uninfected rats or from untreated, uninfected rats did not induce detectable ablastic antibody.Ablastinogen in TIRP was stable to ether treatment, to heating at 37 C for 4 hr, and to heating at 56 C for 45 min, but was inactivated by heating at 100 C for 15 min. Pronase treatment (2 mg/ml TIRP) for 4 hr at 37 C inactivated the antigen in 2 out of 3 samples.Ablastinogen was not dialyzable, and gel filtration of TIRP on Sephadex G-200 in aqueous buffer (1.0 M NaCl, 0.1 M Tris-hydrochloride, pH 8.0) separated the antigen into at least 2 components. The separate components did not induce ablastic antibody, however, recombinations of the components did induce ablastic antibody in immunized rats.  相似文献   

18.
A study has been made on the effect of rat serum on staphylococci. By following the respiration and growth of 5 strains ofStaphylococcus aureus and an equal number ofS. epidermidis in fresh, normal rat serum, we found thatS. aureus grew in, and oxidized rat serum better thanS. epidermidis. Difference in growth was not correlated with nutritional requirements. The antibacterial agent of fresh, normal, undiluted rat serum was stable to heating at 56 C for 1 hr, but its activity was completely destroyed after heating at 60 C for 2 hr. A 50 per cent dilution of rat serum with nutrient broth significantly reduced the antibacterial activity and treatment of rat serum with 0.4m solutions of sodium citrate reduced it drastically. Once the serum had been treated with sodium citrate, or oxalate, addition of equimolar solutions of calcium chloride or magnesium chloride failed to restore the antibacterial activity. Addition of ferric ions in high concentrations allowed the coagulase-negative strains of staphylococci to grow well in this serum. The antibacterial agent of rat serum was absorbed by heat-killed cells ofStaphylococcus aureus andS. epidermidis but not byStreptococcus pyogenes andEscherichia coli. Treatment of rat serum with bentonite at a concentration of 100 mg per ml decreased its antibacterial activity.  相似文献   

19.
The contribution of activated macrophages to protection against Escherichia coli was studied in mice treated intravenously with Corynebacterium parvum 7 days before infection. C. parvum-treated mice showed increased phagocytic activity and enhanced resistance to Listeria infection. In contrast, these mice showed increased susceptibility to a subsequent challenge with E. coli that correlated closely with a reduction in the LD50 of lipopolysaccharide (LPS) in these mice. The peritoneal macrophages obtained from C. parvum-treated mice had a strong ability to phagocytize and kill E. coli in in vitro experiments. A rapid decline in the number of bacteria in the liver of C. parvum-treated mice was observed in the early period of infection. However, the number of bacteria in liver and spleen increased progressively to a lethal dose from 6 hr after infection. At this time, a significant increase in beta-glucuronidase, a lysosomal acid hydrolase, was found in the serum of these mice. In vitro experiments revealed that the peritoneal macrophages from C. parvum-treated mice were highly susceptible to the cytotoxic effect of LPS after 6 hr of incubation with LPS. It is suggested that the hypersensitivity of activated macrophages to the cytotoxic effect of endotoxin derived from E. coli may be partly responsible for the increased susceptibility of C. parvum-treated mice to E. coli infection.  相似文献   

20.
After sodium arsenite (100 microM) treatment, the synthesis of three major heat shock protein families (HSPs; Mr = 110,000, 87,000, and 70,000), as studied with one-dimensional gels, was enhanced twofold relative to that of unheated cells. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater. In parallel, thermotolerance was observed as a 100,000-fold increase in survival from 10(-6) to 10(-1) after 4 hr at 43 degrees C, and as a thermotolerance ratio (TTR) of 2-3 at 10(-3) isosurvival for heating at 45.5 degrees C. Cycloheximide (CHM: 10 micrograms/ml) or puromycin (PUR: 100 micrograms/ml), which inhibited total protein synthesis and HSP synthesis by 95%, completely suppressed the development of thermotolerance when either drug was added after sodium arsenite treatment and removed prior to the subsequent heat treatment. Therefore, thermotolerance induced by arsenite treatment correlated with an increase in newly synthesized HSPs. However, with or without arsenite treatment, CHM or PUR added 2-6 hr before heating and left on during heating caused a 10,000-100,000-fold enhancement of survival when cells were heated at 43 degrees C for 4 hr, even though very little synthesis of heat shock proteins occurred. Moreover, these cells manifesting resistance to heating at 43 degrees C after CHM treatment were much different than those manifesting resistance to 43 degrees C after arsenite treatment. Arsenite-treated cells showed a great deal of thermotolerance (TTR of about 10) when they were heated at 45 degrees C after 5 hr of heating at 43 degrees C, compared with less thermotolerance (TTR of about 2) for the CHM-treated cells heated at 45 degrees C after 5 hr of heating at 43 degrees C. Therefore, there are two different phenomena. The first is thermotolerance after arsenite treatment (observed at 43 degrees C or 45.5 degrees C) that apparently requires synthesis of HSPs. The second is resistance to heat after CHM or PUR treatment before and during heating (observed at 43 degrees C with little resistance at 45.5 degrees C) that apparently does not require synthesis of HSPs. This phenomenon not requiring the synthesis of HSPs also was observed by the large increase in thermotolerance to 45 degrees C caused by heating at 43 degrees C, with or without CHM, after cells were incubated for 6 hr following arsenite pretreatment. For both phenomena, a model based on synthesis and redistribution of HSPs is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号