首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Growth factors are peptides that exert different activities in the CNS, supporting the survival of different cell populations and playing an important role in the maintenance of cell homeostasis. Much evidence has suggested that these molecules can protect neurons from degeneration induced by mechanical injury or excitotoxic stimuli. Different factors can contribute to the regulation of neurotrophic factor expression in the brain. Such mechanisms may therefore be important in the manipulation of the levels of these peptides in specific brain areas as a therapeutic intervention in acute and chronic neurodegenerative diseases. We have used a primary culture of rat cortical astrocytes to investigate the regulation of basic fibroblast growth factor (bFGF) gene expression in comparison with other neurotrophic molecules. Our results indicate that the glucocorticoid analogue dexamethasone markedly elevates bFGF mRNA levels but reduces the expression of nerve growth factor. The induction of bFGF was transient, as it peaked after 6 h and returned to basal levels within 24 h and was not blocked by coincubation of cycloheximide, thus indicating that it did not require de novo protein synthesis. This effect was also observed in vivo, as systemic injection of dexamethasone (1 or 10 mg/kg) produced a significant increase in the amount of bFGF mRNA in cerebral cortex and hippocampus. The effect we describe can contribute to the regulation of bFGF expression in the brain and may be important in relation to the protective effect exerted by this growth factor in different models of neuronal injury.  相似文献   

2.
The transforming growth factor beta family member activin is an important regulator of development and tissue repair. It is strongly up-regulated after acute injury to the adult brain, and application of exogenous activin protects neurons in several lesion models. To explore the role of endogenous activin in the normal and acutely damaged brain, we generated transgenic mice expressing a dominant-negative activin receptor IB (dnActRIB) mutant in forebrain neurons. The functionality of the transgene was verified in vivo. Hippocampal neurons from dnActRIB mice were significantly more vulnerable to intracerebroventricular injection of the excitotoxin kainic acid than those from control littermates, indicating a crucial role of endogenous activin in the rescue of neurons from excitotoxic insult. Because dnActRIB is only expressed in neurons, but not in glial cells, activin affords protection at least in part through a direct action on endangered neurons. Unexpectedly, the transgenic mice also revealed a prominent novel role of activin in glutamatergic neurotransmission in the intact adult brain. Electrophysiologic examination of excitatory synapses onto CA1 pyramidal cells in hippocampal slices of dnActRIB mice showed a reduced NMDA current response, which was associated with impaired long term potentiation. This is the first demonstration that activin receptor signaling is essential to optimize the performance of neuronal circuits in the mature brain under physiological conditions.  相似文献   

3.
Abstract: Exposure of cultured rat hippocampal neurons to glutamate resulted in accumulation of cellular peroxides (measured using the dye 2,7-dichlorofluorescein). Peroxide accumulation was prevented by an N -methyl- d -aspartate (NMDA) receptor antagonist and by removal of extracellular Ca2+, indicating the involvement of NMDA receptor-induced Ca2+ influx in peroxide accumulation. Glutamate-induced reactive oxygen species contributed to loss of Ca2+ homeostasis and excitotoxic injury because antioxidants (vitamin E, propyl gallate, and N-tert -butyl-α-phenylnitrone) suppressed glutamate-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) and cell death. Basic fibroblast growth factor (bFGF), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF), but not ciliary neurotrophic factor, each suppressed accumulation of peroxides induced by glutamate and protected neurons against excitotoxicity. bFGF, NGF, and BDNF each increased (to varying degrees) activity levels of superoxide dismutases and glutathione reductase. NGF increased catalase activity, and BDNF increased glutathione peroxidase activity. The ability of the neurotrophic factors to suppress glutamate toxicity and glutamate-induced peroxide accumulation was attenuated by the tyrosine kinase inhibitor genistein, indicating the requirement for tyrosine phosphorylation in the neuroprotective signal transduction mechanism. The data suggest that glutamate toxicity involves peroxide production, which contributes to loss of Ca2+ homeostasis, and that induction of antioxidant defense systems is a mechanism underlying the [Ca2+]i-stabilizing and excitoprotective actions of neurotrophic factors.  相似文献   

4.
5.
Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target - calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.  相似文献   

6.
Cytokines have been implicated as mediators and inhibitors of diverse forms of neurodegeneration. They are induced in response to brain injury and have diverse actions that can cause, exacerbate, mediate and/or inhibit cellular injury and repair. Here we review evidence for the contribution of cytokines to acute neurodegeneration, focusing primarily on interleukin 1 (IL-1), tumour necrosis factor-alpha (TNFalpha) and transforming growth factor-beta (TGFbeta). TGFbeta seems to exert primarily neuroprotective actions, whereas TNFalpha might contribute to neuronal injury and exert protective effects. IL-1 mediates ischaemic, excitotoxic and traumatic brain injury, probably through multiple actions on glia, neurons and the vasculature. Understanding cytokine action in acute neurodegeneration could lead to novel and effective therapeutic strategies, some of which are already in clinical trials.  相似文献   

7.
The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.  相似文献   

8.
9.
Neurotrophic factors are regarded as potential therapeutic tools in neurodegenerative disorders. Here, we analysed the protective effects of brain-derived neurotrophic factor, neurotrophin-3, glial cell line-derived neurotrophic factor and neurturin against the excitotoxic damage induced by kainate in striatal neurons in vitro and in vivo. Our results show that the decrease in the number of cultured striatal calbindin-positive neurons induced by kainate was prevented by treatment with any of these factors. To characterize their protective effects in vivo, cell lines overexpressing brain-derived neurotrophic factor, neurotrophin-3, glial cell line-derived neurotrophic factor or neurturin were grafted into the striatum. We found that the numbers of striatal projection neurons (calbindin-positive) and striatal interneurons (parvalbumin- or choline acetyltransferase-positive) were differentially decreased after kainate lesion. These neurotrophic factors prevented the loss of striatal projection neurons and interneurons with differing efficiency: brain-derived neurotrophic factor was the most efficient, whereas neurturin was the least. Our findings show that brain-derived neurotrophic factor, neurotrophin-3, glial cell line-derived neurotrophic factor and neurturin have specific neuroprotective profiles in striatal neurons and indicate that they are specific modulators of the survival of distinct subsets of striatal neurons in pathophysiological conditions.  相似文献   

10.
Abstract: Epidermal growth factor (EGF) and basic fibro-blast growth factor (bFGF) are both trophic for dopamine neurons s in cultures of dissociated embryonic rat mesen-cephaion, but the significance of this apparent overlap in neurotrophic activity is not yet known. In this study, we investigated the mechanisms of action of these two growth factors and the potential relationship between them, Using a nuclease protection assay, we determined that bFGF mRNA was expressed in the cultures. Double-label immunocytochemistry revealed that bFGF immunore-active material could be detected in tyrosine hydroxylase immunoreactive neurons and glial fibrillary acidic protein immunoreactive astrocytes. EGF treatment increased bFGF mRNA content per culture dish. As we have previously demonstrated that EGF exerts its dopaminergic neurotrophic activity via an intermediate cell type, studies were designed to address whether the pathway by which EGF acts on dopaminergic neurons is mediated by the release of bFGF. However, the trophic action of EGF on dopamine neurons, represented by high-affinity neuronal dopamine uptake, could not be blocked by immunoneutralization of bFGF, suggesting that the actions of EGF were not mediated by bFGF release. The time course of the effects of EGF and bFGF on dopamine uptake were similar, with significant increases detectable only after 5 days in culture. Both growth factors were active in the picomolar-to-nannomolar range with maximal trophic activity between 0.4 and 2.5 n M. EGF, however, was the more potent mitogen under these conditions. When cultures were simultaneously incubated with maximal concentrations of EGF and bFGF, the effect on dopamine uptake was significantly greater than with either growth factor alone and, in fact, approximated the sum of the individual effects. On the basis of these results we conclude that these growth factors have independent effects on dopamine neurons of the mesencephalon.  相似文献   

11.
The induction of synthesis or release of endogenous neurotrophic factors in the brain by low-molecular-weight drugs could be a feasible alternative for the direct administration of neurotrophic factors for the treatment of central nervous system disorders. Recent data suggest that several drugs already in clinical use increase the synthesis, release, or signaling of neurotrophins. Antidepressant drugs increase the synthesis and signaling of brain-derived neurotrophic factor (BDNF), and BDNF signaling appears to be both sufficient and necessary for the antidepressant-induced behavioral effects. Furthermore, neurotrophins and other neurotrophic factors play a role in the acute and chronic responses produced by addictive drugs. Moreover, several neuroprotective drugs influence neurotrophin synthesis or signaling, although the significance of these effects is still unclear. These findings reveal a wider role for neurotrophic factors in drug action than has previously been expected, and they suggest that neurotrophin-induced trophic responses in neuronal connectivity and plasticity may be involved in the mechanism of action of several classes of CNS drugs. Improved assay systems are needed for the systematic screening of the effects of putative neuroprotective drugs on the synthesis, release, and signaling of neurotrophic factors, and for the evaluation of the functional role of these factors in the action of novel drug candidates.  相似文献   

12.
《Cytotherapy》2014,16(10):1371-1383
Background aimsThe purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo.MethodsCultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media.ResultsIsolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects.ConclusionsL-MSCs can secrete various neurotrophic factors stimulating neurite outgrowth and protecting neurons against brain ischemic injury through paracrine mechanism.  相似文献   

13.
Dietary restriction (DR; reduced calorie intake) increases the lifespan of rodents and increases their resistance to cancer, diabetes and other age-related diseases. DR also exerts beneficial effects on the brain including enhanced learning and memory and increased resistance of neurons to excitotoxic, oxidative and metabolic insults. The mechanisms underlying the effects of DR on neuronal plasticity and survival are unknown. In the present study we show that levels of brain-derived neurotrophic factor (BDNF) are significantly increased in the hippocampus, cerebral cortex and striatum of mice maintained on an alternate day feeding DR regimen compared to animals fed ad libitum. Damage to hippocampal neurons induced by the excitotoxin kainic acid was significantly reduced in mice maintained on DR, and this neuroprotective effect was attenuated by intraventricular administration of a BDNF-blocking antibody. Our findings show that simply reducing food intake results in increased levels of BDNF in brain cells, and suggest that the resulting activation of BDNF signaling pathways plays a key role in the neuroprotective effect of DR. These results bolster accumulating evidence that DR may be an effective approach for increasing the resistance of the brain to damage and enhancing brain neuronal plasticity.  相似文献   

14.
Glutamate excitotoxicity is one of the major events that takes place during various neurotoxic injuries such as brain ischemia. We prepared grape seed extracts, from two different varieties, containing high amounts of polyphenols but little resveratrol. Their neuroprotective effects were investigated using primary culture of neonatal mouse hippocampal neurons treated with an excitotoxic concentration of glutamate. Koshu, a white, local variety of V. vinifera, alleviated the acute inactivation of Erk1/2 and dendrite retraction in cultured hippocampal neurons exposed to a toxic concentration of glutamate (1.0 ng/ml). By contrast, Muscat Bailey A, a red, hybrid variety (Muscat Humburg × Bailey), failed to show any neuroprotective effect. Unlike brain-derived neurotrophic factor and other neuroprotective cytokines, Koshu extract did not induce Akt phosphorylation. Koshu extract also augmented neuron survival rate 24 hours after glutamate toxicity. The comparison of polyphenols between the two samples by liquid chromatography/time-of-flight mass spectrometry demonstrated that Koshu had higher amounts of low molecular weight polyphenols along with several Koshu-specific procyanidin oligomers. These data suggest the presence of high affinity molecular targets for polyphenols in hippocampal neurons, which induce neuroprotective effects in a manner different from BDNF, and the importance of low molecular weight polyphenols and/or procyanidin oligomers for neuroprotection.  相似文献   

15.
Aggregation of P19 embryonal carcinoma cells in the presence of a factor, secreted by the visceral endoderm-like cell line END-2, induces differentiation to cell types including visceral endoderm, mesoderm-derived muscle tissue and neurons. This factor is different from activin A, type beta transforming growth factors (TGF beta) and fibroblast growth factors (FGF) although its acid- and heat-lability and its stability in the presence of reducing agents resemble the properties of the FGFs. The END-2 factor is completely inhibited in its action by activin A. This inhibitory effect of activin A is not specific for the END-2 factor as retinoic acid (RA)-induced differentiation of aggregated P19 EC cells into neurons (10(-8) M RA) or mesoderm-derived muscle tissue (10(-9) M RA) is also completely inhibited by activin A. The results of this study suggest that the END-2 activity and activin A are intimately involved in the induction and regulation, respectively, of early differentiation processes in vertebrate embryogenesis.  相似文献   

16.
The aim of this work was to test whether growth factors such as basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) undergo autophosphorylation and whether this affects their biological activity. Incubation of those growth factors with [gamma-(32)P]ATP resulted in phosphorylation in vitro. The phosphate bond was resistant to alkaline pH, yet acid-labile. Addition of alkaline phosphatase resulted in time and protein dependent dephosphorylation. Concomitantly, alkaline phosphatase abolished the neuroprotective effect of those growth factors upon oxygen and glucose deprivation and upon staurosporine-induced cell death. For those studies, we were using primary cultures of cortical and hippocampal neurons from embryonic and neonatal rats. Incubation of bFGF with non-hydrolyzable ATP-gammaS resulted in phosphorylation and in neuroprotection resistant to alkaline phosphatase. We conclude that bFGF, NGF and BDNF undergo autophosphorylation on site(s) other than serine, threonine, tyrosine and/or ATP-binding, and that this binding of phosphate is essential for neuroprotection in vivo.  相似文献   

17.
Ischemic stroke, although causing brain infarction and neurological deficits, can activate innate neuroprotective mechanisms, including regional mechanisms within the ischemic brain and distant mechanisms from non-ischemic organs such as the liver, spleen, and pancreas, supporting neuronal survival, confining brain infarction, and alleviating neurological deficits. Both regional and distant mechanisms are defined as systems neuroprotective mechanisms. The regional neuroprotective mechanisms involve release and activation of neuroprotective factors such as adenosine and bradykinin, inflammatory responses, expression of growth factors such as nerve growth factors and neurotrophins, and activation and differentiation of resident neural stem cells to neurons and glial cells. The distant neuroprotective mechanisms are implemented by expression and release of endocrine neuroprotective factors such as fibroblast growth factor 21, resistin like molecule γ, and trefoil factor 3 from the liver; brain-derived neurotrophic factor and nerve growth factor from the spleen; and neurotrophin 3 and vascular endothelial growth factor C from the pancreas. Furthermore, ischemic stroke induces mobilization of bone marrow hematopoietic stem cells and endothelial progenitor cells into the circulatory system and brain, contributing to neuroprotection. The regional and distant mechanisms may act in coordination and synergy to protect the ischemic brain from injury and death. This paper addresses these mechanisms and associated signaling networks.  相似文献   

18.
Endocannabinoids are lipid signaling mediators that exert an important neuromodulatory role and confer neuroprotection in several types of brain injury. Excitotoxicity and stroke can induce neural progenitor (NP) proliferation and differentiation as an attempt of neuroregeneration after damage. Here we investigated the mechanism of hippocampal progenitor cell engagement upon excitotoxicity induced by kainic acid administration and the putative involvement of the CB1 cannabinoid receptor in this process. Adult NPs express kainate receptors that mediate proliferation and neurosphere generation in vitro via CB1 cannabinoid receptors. Similarly, in vivo studies showed that excitotoxicity-induced hippocampal NPs proliferation and neurogenesis are abrogated in CB1-deficient mice and in wild-type mice administered with the selective CB1 antagonist rimonabant (N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazolecarboxamide; SR141716). Kainate stimulation increased basic fibroblast growth factor (bFGF) expression in cultured NPs in a CB1-dependent manner as this response was prevented by rimonabant and mimicked by endocannabinoids. Likewise, in vivo analyses showed that increased hippocampal expression of bFGF, as well as of brain-derived neurotrophic factor and epidermal growth factor, occurs upon excitotoxicity and that CB1 receptor ablation prevents this induction. Moreover, excitotoxicity increased the number of CB1+ bFGF+ cells, and this up-regulation preceded NP proliferation. In summary, our results show the involvement of the CB1 cannabinoid receptor in NP proliferation and neurogenesis induced by excitotoxic injury and support a role for bFGF signaling in this process.  相似文献   

19.
Lanthionines are novel neurotrophic and neuroprotective small molecules that show promise for the treatment of neurodegenerative diseases. In particular, a recently developed, cell permeable lanthionine derivative known as LKE (lanthionine ketimine 5-ethyl ester) promotes neurite growth at low nanomolar concentrations. LKE also has neuroprotective, anti-apoptotic, and anti-inflammatory properties. Its therapeutic potential in cerebral ischemia and its mechanisms of neurotrophic action remain to be fully elucidated. Here, we hypothesize that the neuroprotective actions of LKE could result from induction or modulation of CRMP2. We found that treating primary cultured mouse neurons with LKE provided significant protection against t-butyl hydroperoxide-induced neuronal death possibly through CRMP2 upregulation. Similarly, in vivo studies showed that LKE pre and/or post-treatment protects mice against permanent distal middle cerebral artery occlusion (p-MCAO) as evidenced by lower stroke lesions and improved functional outcomes in terms of rotarod, grip strength and neurologic deficit scores in treated groups. Protein expression levels of CRMP2 were higher in brain cortices of LKE pretreated mice, suggesting that LKE’s neuroprotective activity may be CRMP2 dependent. Lower activity of cleaved PARP-1 and higher activity of SIRT-1 was also observed in LKE treated group suggesting its anti-apoptotic properties. Our results suggest that LKE has potential as a therapeutic intervention in cerebral ischemia and that part of its protective mechanism may be attributed to CRMP2 mediated action and PARP-1/SIRT-1 modulation.  相似文献   

20.
Lanthionines are novel neurotrophic and neuroprotective small molecules that show promise for the treatment of neurodegenerative diseases. In particular, a recently developed, cell permeable lanthionine derivative known as LKE (lanthionine ketimine 5-ethyl ester) promotes neurite growth at low nanomolar concentrations. LKE also has neuroprotective, anti-apoptotic, and anti-inflammatory properties. Its therapeutic potential in cerebral ischemia and its mechanisms of neurotrophic action remain to be fully elucidated. Here, we hypothesize that the neuroprotective actions of LKE could result from induction or modulation of CRMP2. We found that treating primary cultured mouse neurons with LKE provided significant protection against t-butyl hydroperoxide-induced neuronal death possibly through CRMP2 upregulation. Similarly, in vivo studies showed that LKE pre and/or post-treatment protects mice against permanent distal middle cerebral artery occlusion (p-MCAO) as evidenced by lower stroke lesions and improved functional outcomes in terms of rotarod, grip strength and neurologic deficit scores in treated groups. Protein expression levels of CRMP2 were higher in brain cortices of LKE pretreated mice, suggesting that LKE’s neuroprotective activity may be CRMP2 dependent. Lower activity of cleaved PARP-1 and higher activity of SIRT-1 was also observed in LKE treated group suggesting its anti-apoptotic properties. Our results suggest that LKE has potential as a therapeutic intervention in cerebral ischemia and that part of its protective mechanism may be attributed to CRMP2 mediated action and PARP-1/SIRT-1 modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号