首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acidification of endocytic vesicles has been implicated as a necessary step in various processes including receptor recycling, virus penetration, and the entry of diphtheria toxin into cells. However, there have been few accurate pH measurements in morphologically and biochemically defined endocytic compartments. In this paper, we show that prelysosomal endocytic vesicles in HepG2 human hepatoma cells have an internal pH of approximately 5.4. (We previously reported that similar vesicles in mouse fibroblasts have a pH of 5.0.) The pH values were obtained from the fluorescence excitation profile after internalization of fluorescein labeled asialo-orosomucoid (ASOR). To make fluorescence measurements against the high autofluorescence background, we developed digital image analysis methods for estimating the pH within individual endocytic vesicles or lysosomes. Ultrastructural localization with colloidal gold ASOR demonstrated that the pH measurements were made when ligand was in tubulovesicular structures lacking acid phosphatase activity. Biochemical studies with 125I-ASOR demonstrated that acidification precedes degradation by more than 30 min at 37 degrees C. At 23 degrees C ligand degradation ceases almost entirely, but endocytic vesicle acidification and receptor recycling continue. These results demonstrate that acidification of endocytic vesicles, which causes ligand dissociation, occurs without fusion of endocytic vesicles with lysosomes. Methylamine and monensin raise the pH of endocytic vesicles and cause a ligand-independent loss of receptors. The effects on endocytic vesicle pH are rapidly reversible upon removal of the perturbant, but the effects on cell surface receptors are slowly reversible with methylamine and essentially irreversible with monensin. This suggests that monensin can block receptor recycling at a highly sensitive step beyond the acidification of endocytic vesicles. Taken together with other direct and indirect estimates of endocytic vesicle pH, these studies indicate that endocytic vesicles in many cell types rapidly acidify below pH 5.5, a pH sufficiently acidic to allow receptor-ligand dissociation and the penetration of some toxin chains and enveloped virus nucleocapsids into the cytoplasm.  相似文献   

2.
Eight monoclonal antibodies, all IgG2a, which recognize a 180/90-kDa glycoprotein similar in properties to the receptor for alpha 2-macroglobulin of mouse embryo 3T3 cell plasma membranes, have been tested for their effect on the binding and uptake of alpha 2-macroglobulin by live cells. One antibody directly inhibited binding of 125I-alpha 2-macroglobulin under conditions in which 125I-transferrin binding to the transferrin receptor was unaffected. Another monoclonal antibody decreased alpha 2-macroglobulin binding when preincubated with cells at 37 degrees C. This antibody was also capable of specifically binding to ligand-receptor complexes formed by preincubating 125I-alpha 2-macroglobulin with detergent extracts of Swiss 3T3 cells. Immunoelectron microscopy showed that the 180/90-kDa glycoprotein was localized in coated pits of the cell surface and in intracellular endocytic vesicles (receptosomes/endosomes). The data suggest that the 180/90-kDa glycoprotein is a component of the receptor for alpha 2-macroglobulin.  相似文献   

3.
The factors necessary to dissociate iron from transferrin in endocytic vesicles and to mobilize the iron across the vesicle membrane were studied in a preparation of endocytic vesicles markedly enriched in transferrin-transferrin receptor complexes isolated from rabbit reticulocytes. Vesicles were prepared with essentially fully saturated transferrin by incubating the reticulocytes with the protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone prior to incubation with 59Fe, 125I-transferrin with or without fluorescein isothiocyanate labeling. Initiation of acidification by the addition of ATP was sufficient to achieve dissociation of 59Fe from transferrin with a rate constant of 0.054 +/- 0.06 s-1. Mobilization of 59Fe out of the vesicles required, besides ATP, the addition of a reductant with 1 mM ascorbate, allowing approximately 60% mobilization at 10 min with a rate constant of 0.0038 +/- 0.0006 s-1. An NADH:ferricyanide reductase activity could be demonstrated in the vesicles with an activity of 7.1 x 10(-9) mol of NADH reduced per min/mg of vesicle protein. Both dissociation and mobilization were inhibited by N-ethylmaleimide, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, and monensin. Mobilization, but not dissociation, was inhibited by the permeant Fe(II) chelator alpha,alpha'-dipyridyl. The Fe(III) chelators deferoxamine, diethylenetriaminepentaacetic acid, and apotransferrin did not promote mobilization of dissociated iron in the absence of a reductant. This study establishes the basis for the cellular incorporation of iron through the endocytic pathway in which the endocytic vesicle membrane utilizes, in a sequential way, an acidification system, an iron reduction system, and an Fe(II) transporter system.  相似文献   

4.
5.
6.
7.
Measurement of membrane transport in suspensions of isolated membrane vesicles provides averaged information over a potentially very heterogeneous vesicle population. To examine the regulatory mechanisms for ATP-dependent acidification, methodology was developed to measure pH in individual endocytic vesicles. Endocytic vesicles from proximal tubule apical membrane of rat kidney were labeled in vivo by intravenous infusion of FITC-dextran (9 kD); a microsomal fraction was obtained from dissected renal cortex by homogenization and differential centrifugation. Vesicles were immobilized on a polylysine coated coverglass and imaged at high magnification by a silicon intensified target camera. ATP-dependent acidification was not influenced by endosome immobilization. Endosome pH was determined from the integrated fluorescence intensity of individual labeled vesicles after background subtraction. Calibration studies with high K and nigericin showed nearly identical fluorescence vs. pH curves for different endosomes with a standard deviation for a single pH measurement in a single endosome of approximately 0.2 pH units. In response to addition of 1 mM MgATP in the presence of K and valinomycin, endosome pH decreased from 7.2 to a mean of 6.4 with a unimodal distribution with width at half-maximum of approximately 1 pH unit. The drop in endosome pH increased and the shape of the distribution changed when the time between FITC-dextran infusion and kidney removal was increased from 5 to 20 min. Differences in ATP-dependent acidification could not be attributed to heterogeneity in passive proton conductance. These results establish a direct method to measure pH in single endocytic vesicles and demonstrate remarkable heterogeneity in ATP-dependent acidification which was interpreted in terms of heterogeneity in the number and/or activity of proton pumps at serial stages of endocytosis.  相似文献   

8.
9.
A papain-binding protein (PBP) resembling human alpha 2-macroglobulin (alpha 2M) but of Mr half that of alpha 2M was purified from plaice (Pleuronectes platessa L.) plasma. The plaice protein displayed most of the distinctive inhibitory properties of the human macroglobulin, and was therefore considered, despite its smaller molecular size, to be homologous with alpha 2M. Plaice PBP was shown to consist of four dissimilar subunits; two I chains (Mr 105 000) and two II chains (Mr 90 000). Each of the larger I chains contained a "bait region" sensitive to proteolytic attack by a variety of proteinases, and an autolytic site analogous to the autolytic site of alpha 2M. Subunit I, almost certainly at the autolytic site, formed SDS-stable, covalent links with methylamine or a proportion of the trapped proteinase molecules. A scheme is proposed for the evolution of human alpha 2M from the smaller fish protein, and the possibility of a shared evolutionary origin for alpha 2M and the complement components C3 and C4 is discussed.  相似文献   

10.
Blood serum separation by the method of gel filtration on Sephadex G-200 with the subsequent immunochemical determination of the quantitative content of basic proteolysis inhibitors permitted isolating the alpha 2-macroglobulin fraction while alpha 1-antitrypsin and alpha 1-antichymotrypsin separation was a failure. The immunochemical analysis of the antienzymic activity of the isolated inhibitors showed that 32.3 +/- 3.5% of the introduced kallikrein, 18.7 +/- 0.6% of trypsin and 14.4 +/- 4.1% of chymotrypsin were bound in the zone of alpha 2-macroglobulin. The rest of antienzymic activity was localized in the zone of alpha 1-antitrypsin and alpha 1-antichymotrypsin. After a preliminary saturation of blood serum with trypsin in the amount equivalent to its antitryptic capacity (200 micrograms/ml) the ability of alpha 2-macroglobulin to bind kallikrein and chymotrypsin lowers considerably (by 69 and 72%, respectively). In the zone of alpha 1-antitrypsin and alpha 1-antichymotrypsin a decrease in the ability to bind kallikrein and chymotrypsin amounted to 44 and 12% respectively. Thus, alpha 2-macroglobulin being bound with trypsin looses considerably its ability to bind other enzymes.  相似文献   

11.
Insulin regulates glucose uptake through effects on the trafficking of the glucose transporter Glut4. To investigate the degree of overlap between Glut4 and the general endocytic pathways, the kinetics of trafficking of Glut4 and the receptors for transferrin (Tf) and α(2)-macroglobulin (α-2-M; LRP-1) were compared using quantitative flow cytometric assays. Insulin increased the exocytic rate constant (k(ex)) for both Glut4 and Tf. However, the k(ex) of Glut4 was 5-15 times slower than Tf in both basal and insulin-stimulated cells. The endocytic rate constant (k(en)) of Glut4 was also five times slower than Tf. Insulin did not affect the k(en) of either protein. In basal cells, the k(en) for α-2-M/LRP-1 was similar to Glut4 but 5-fold slower than Tf. Insulin increased k(en) for α-2-M/LRP-1 by 30%. In contrast, the k(ex) for LRP-1 was five times faster than Glut4 in basal cells, and insulin did not increase this rate constant. Thus, although there is overlap in the protein machineries/compartments utilized, the differences in trafficking kinetics indicate that Glut4, the Tf receptor, and LRP-1 are differentially processed both within the cell and at the plasma membrane. It has been reported that insulin decreases the k(en) of Glut4 in adipocytes. However, the effect of exocytosis on the "internalization" assays was not considered. Because it is counterintuitive, the effect of exocytosis on these assays is often overlooked in endocytosis studies. Using mathematical modeling and simulation, we show that the reported decrease in Glut4 k(en) can be entirely accounted for by the well established increase in Glut4 k(ex).  相似文献   

12.
From electron micrographs single molecules of alpha 2-macroglobulin in the "closed" form, the "open" form and as the trypsin complex have been computer averaged. The molecular images are discussed. Molecules of the electrophoretically fast migrating "F-form" have the "closed" form. In the case of the alpha 2-macroglobulin/trypsin complex the two attached trypsin molecules are located very near to each other and in the central part of the alpha 2-macroglobulin molecule.  相似文献   

13.
Radioimmunoassay of rat acute-phase alpha 2-macroglobulin   总被引:1,自引:0,他引:1  
A double-antibody radioimmunoassay (RIA) to acute-phase alpha 2-macroglobulin was developed for the quantitation of this large macromolecule in physiological fluids. The primary receptor for the RIA was a monospecific antiserum to purified acute-phase alpha 2-macroglobulin which produced a high titre (7.5 . 10(6)) antibody with a strong affinity for rat acute-phase alpha 2-macroglobulin (Ka = 1.24 . 10(11)) as measured by Scatchard analysis. The validity of the assay was confirmed by specificity for rat alpha 2-macroglobulin measured in various physiological fluids as assessed by parallel dose-response curves; and accuracy, measured by the analytical recovery of alpha 2-macroglobulin by the RIA in serum (104 +/- 7%) and buffer (103 +/- 7%), and the correlation (R = 0.999) of measurements of acute-phase alpha 2-macroglobulin-containing samples measured in serum and buffer. Reference acute-phase serum measured by this RIA and by rocket immunoelectrophoresis were 98.6% in agreement. Radioimmunoassay sensitivity was estimated at less than 1.0 ng alpha 2-macroglobulin/ml, measured over a range of 0-160 ng. Precision was assessed by intraassay (2.99 +/- 0.97%) and interassay (8.76 +/- 2.64%) variation. Evaluation confirmed that quantitation of rat acute-phase alpha 2-macroglobulin by this RIA met the criteria of sensitivity, validity and precision.  相似文献   

14.
Subcellular membrane and granule fractions derived from human platelets contain immunologically identifiable alpha2-macroglobulin and alpha1-antitrypsin. These platelet-derived inhibitors show a reaction of immunologic identity when compared to alpha2-macroglobulin and alpha1-antitrypsin purified from human plasma. Further, the platelet protease inhibitors possessed a similar subunit polypeptide chain structure to their plasma counterparts as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis. Studies of the binding of radiolabeled trypsin to the various solubilized platelet subcellular fractions suggest that the granule-associated alpha2-macroglobulin and alpha1-antitrypsin, as well as membrane-associated alpha2-macroglobulin were functionally active. Quantitatively, circulating platelets contain relatively small concentrations of these inhibitors as compared to platelet-associated fibrinogen and factor VIIIAGN. Platelet protease inhibitors may modulate the protease-mediated events involved in the formation of hemostatic plugs and thrombi.  相似文献   

15.
Summary The water permeability of ADH target epithelial cells is believed to be regulated by a cycle of exo-endocytosis of vesicles containing functional water channels. These vesicles were selectively labeled in intact frog urinary bladders with an impermeant fluorescent marker, 6-carboxyfluorescein. Vesicle suspensions containing the labeled endosomes were obtained by homogenization and differential centrifugation of bladder epithelial cells. The osmotic permeability of the endocytic vesicles was measured, using a stopped-flow fluorescence technique, in the absence or in the presence of HgCl2. This permeability was found very high (500 m/sec) and inhibited by 1 mm HgCl2 (90%), thus confirming the presence of water channels. The labeled endosomes were then separated from the other membrane vesicles by flow cytometry and sorting. Their protein content was analyzed by electrophoresis on ultrathin polyacrylamide gels. Two double bands were found at 71 and 55 kDa as well as a small band at 43 kDa. They respectively correspond to 31, 38 and 10% of the total amount of silver-stained proteins present in the sorted endosomes, while they only represent 2, 4, and less than 1% of the proteins contained in the vesicle suspension, before sorting. These highly enriched proteins (or at least one of them) are likely to be involved in the mechanism of water transport. Associated to their partial purification by differential centrifugation, the sorting of the endosomes by flow cytometry seems a good way to further characterize the water channel.  相似文献   

16.
alpha 2-Macroglobulin (alpha 2M) is one of the major cadmium-binding proteins of human plasma. As determined with equilibrium dialysis, alpha 2M bound 4.6 (+/- 0.7) mol Cd2+ per mol protein with an apparent dissociation constant of (9.6 (+/- 5.0] X 10(-7) M. Methylamine-modified alpha 2M (alpha 2M-Me) had a similar affinity for Cd2+ (Kd,app = 5.3 X 10(-7) M), but fewer binding sites. Cadmium produced a small increase in the amidolytic activity of trypsin in the presence of alpha 2M and soybean trypsin inhibitor. Using the binding parameters determined from the equilibrium dialysis studies, the Cd2+ concentration which produced a half-maximal increase in amidolytic activity corresponded to saturation of all Cd2+-binding sites in one-half of the alpha 2M molecules. From these results, a model is proposed in which one Cd2+-binding site is present in each of the four polypeptide chains which compose alpha 2M.  相似文献   

17.
Previous studies have demonstrated that human plasma alpha 2-macroglobulin (alpha 2 M) possesses a single subunit chain (Mr approximately 185,000) when incubated with dodecyl sulfate and dithiothreitol at 37 degrees C and analyzed by dodecyl sulfate-gel electrophoresis. The present study details the observation that heating alpha 2 M to 90 degrees C under identical conditions produces at least two additional polypeptide chains, termed bands II and III, with apparent molecular weights of 125,00 and 62,000. The generation of these fragments is enhanced by increasing the time of incubation. The appearance of band II composition of the buffer, dodecyl sulfate concentrations, or alpha 2 M protein concentration in the incubation mixture. The electrophoretic bands II and III of alpha 2 M have dissimilar 125I-labeled tryptic peptide digests and also differ in their amino acid composition. The heat-induced fragmentation of alpha 2M is not affected by the inclusion of a variety of low molecular weight protease inhibitors, suggesting that the appearance of bands II and III is not due to enzyme-catalyzed hydrolysis. When the subunit chain of alpha 2M is first cleaved by trypsin into the previously described Mr = 85,000 derivative, neither band II nor III material, nor other lower molecular weight products are generated by heat treatment. Furthermore, preincubation of alpha 2M with methylamine prevents fragmentation of the subunit chain. These results indicate that these fragments are neither pre-existing subunits of alpha 2M nor derivatives formed prior to treatment for gel analysis. These data provide evidence that a covalent bond in the alpha 2M molecule is unusually susceptible to heat-induced cleavage.  相似文献   

18.
19.
20.
High resolution images of rat acute-phase alpha 2-macroglobulin (AP alpha 2M) have been obtained by using dark-field electron microscopy. No staining or artifact-inducing procedures were used. Analysis of unfiltered electron microscope plates, exposed to minimal electron beam radiation, revealed highly contrasted particles of variable morphology with dimensions of approx. 19 nm X 14 nm. An electron-dense core with four to six projections could be seen. Two-fold symmetry was evident in selected images, supporting the four-subunit composition of the protein. Image processing and filtering confirmed the presence and configuration of the projections by demonstrating exact molecular dimensions of 16 nm X 9.5 nm and a shape with six projections like that of the Russian letter zh. SDS/polyacrylamide-gel electrophoresis revealed that this molecule was in the proteinase-bound form. C.d. data revealed a surprisingly low content of alpha-helical secondary structure (12%) and an atypically large content of beta-form structure (33%). Comparison of the amino acid compositions of AP alpha 2M and human alpha 2-macroglobulin indicated a high degree of homology between the two molecules. It is concluded that the conformation of rat AP alpha 2M, both at the molecular and secondary structural levels, is strikingly similar to that of human alpha 2-macroglobulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号