首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammalian cells, inhibition of translation interferes with synthesis of the lipid-linked oligosaccharide (LLO) Glc3Man9GlcNAc2-P-P-dolichol as measured with radioactive sugar precursors. Conflicting hypotheses have been proposed, and the fundamental basis for this regulation has remained elusive. Here, fluorophore-assisted carbohydrate electrophoresis (FACE) was used to measure LLO concentrations directly in cells treated with translation blockers. Further, LLO biosynthetic enzymes were assayed in vitro with endogenous acceptor substrates using either cells gently permeabilized with streptolysin-O (SLO) or microsomes from homogenized cells. In Chinese hamster ovary (CHO)-K1 cells treated with translation blockers, FACE did not detect changes in concentrations of Glc3Man9GlcNAc2-P-P-dolichol or early LLO intermediates. These results do not support earlier proposals for feedback repression of LLO initiation by accumulated Glc3Man9GlcNAc2-P-P-dolichol, or inhibition of a GDP-mannose dependent transferase. With microsomes from cells treated with translation blockers, there was no interference with LLO initiation by GlcNAc-1-P transferase (GPT), mannose-P-dolichol synthase, glucose-P-dolichol synthase, or LLO synthesis in vitro, as reported previously. Surprisingly, inhibition of all of these was detected with the SLO in vitro system. Additional experiments with the SLO system showed that the three transferases shared a limited pool of dolichol-P that was trapped as Glc3Man9GlcNAc2-P-P-dolichol by translation arrest. Overexpression of GPT was unable to reverse the effects of translation arrest on LLO initiation, and experiments with FACE and the SLO system showed that overexpressed GPT was not functional in vivo, although it was highly active in microsomal assays. Thus, the combined use of the SLO in vitro system and FACE showed that LLO biosynthesis depends upon a limited primary pool of dolichol-P. Physical perturbation associated with microsome preparation appears to make available a secondary pool of dolichol-P, masking inhibition by translation arrest, as well as activating a nonfunctional fraction of GPT. The implications of these results for the organization of the LLO pathway are discussed.  相似文献   

2.
3.
The assembly of the core oligosaccharide region of asparagine-linked glycoproteins proceeds by means of the dolichol pathway. The first step of this pathway, the reaction of dolichol phosphate with UDP-GlcNAc to form N-acetylglucosaminylpyrophosphoryldolichol (GlcNAc-P-P-dolichol), is under investigation as a possible site of metabolic regulation. This report describes feedback inhibition of this reaction by the second intermediate of the pathway, N-acetylglucosaminyl-N-acetylglucosaminylpyrophosphoryldolichol (GlcNAc-GlcNAc-P-P-dolichol), and product inhibition by GlcNAc-P-P-dolichol itself. These influences were revealed when the reactions were carried out in the presence of showdomycin, a nucleoside antibiotic, present at concentrations that block the de novo formation of GlcNAc-GlcNAc-P-P-dolichol but not that of GlcNAc-P-P-dolichol. The apparent K(i) values for GlcNAc-P-P-dolichol and GlcNAc-GlcNAc-P-P-dolichol under basal conditions were 4.4 and 2.8 microM, respectively. Inhibition was also observed under conditions where mannosyl-P-dolichol (Man-P-dol) stimulated the biosynthesis of GlcNAc-P-P-dolichol; the apparent K(i) values for GlcNAc-P-P-dolichol and GlcNAc-GlcNAc-P-P-dolichol were 2.2 and 11 microM, respectively. Kinetic analysis of the types of inhibition indicated competitive inhibition by GlcNAc-P-P-dolichol toward the substrate UDP-GlcNAc and non-competitive inhibition toward dolichol phosphate. Inhibition by GlcNAc-GlcNAc-P-P-dolichol was uncompetitive toward UDP-GlcNAc and competitive toward dolichol phosphate. A model is presented for the kinetic mechanism of the synthesis of GlcNAc-P-P-dolichol. GlcNAc-P-P-dolichol also exerts a stimulatory effect on the biosynthesis of Man-P-dol, i.e. a reciprocal relationship to that previously observed between these two intermediates of the dolichol pathway. This network of inhibitory and stimulatory influences may be aspects of metabolic control of the pathway and thus of glycoprotein biosynthesis in general.  相似文献   

4.
The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for N-linked glycosylation of proteins in the endoplasmic reticulum (ER), is catalyzed by different glycosyltransferases located at the membrane of the ER. We report on the identification and characterization of the ALG12 locus encoding a novel mannosyltransferase responsible for the addition of the alpha-1,6 mannose to dolichol-linked Man7GlcNAc2. The biosynthesis of the highly branched oligosaccharide follows an ordered pathway which ensures that only completely assembled oligosaccharide is transferred from the lipid anchor to proteins. Using the combination of mutant strains affected in the assembly pathway of lipid-linked oligosaccharides and overexpression of distinct glycosyltransferases, we were able to define the substrate specificities of the transferases that are critical for branching. Our results demonstrate that branched oligosaccharide structures can be specifically recognized by the ER glycosyltransferases. This substrate specificity of the different transferases explains the ordered assembly of the complex structure of lipid-linked Glc3Man9GlcNAc2 in the endoplasmic reticulum.  相似文献   

5.
Burda  P; Aebi  M 《Glycobiology》1998,8(5):455-462
The biosynthesis of the lipid-linked oligosaccharide substrate for N- linked protein glycosylation follows a highly conserved pathway at the membrane of the endoplasmic reticulum. Based on the synthetic growth defect in combination with a reduced oligosaccharyltransferase activity (wbp1), we have identified alg10 mutant strains which accumulate lipid- linked Glc2Man9GlcNAc2. We cloned the corresponding wild-type gene and show in a novel in vitro assay that Alg10p is a dolichyl-phosphoglucose- dependent glucosyltransferase which adds the terminal alpha-1,2 glucose to the lipid-linked Glc2Man9GlcNAc2 oligosaccharide. Hypoglycosylation of secreted proteins in alg10 deletion strains demonstrates that the terminal alpha-1,2-linked glucose residue is a key element in substrate recognition by the oligosaccharyltransferase. This ensures that primarily completely assembled oligosaccharide is transferred to protein.   相似文献   

6.
The study of the glycosylation pathway of a mannosylphosphoryldolichol-deficient CHO mutant cell line (B3F7) reveals that truncated Glc(0-3)Man5GlcNAc2 oligosaccharides are transferred onto nascent proteins. Pulse-chase experiments indicate that these newly synthesized glycoproteins are retained in intracellular compartments and converted to Man4GlcNAc2 species. In this paper, we demonstrate that the alpha1,2 mannosidase, which is involved in the processing of Man5GlcNAc2 into Man4GlcNAc2, is located in the rough endoplasmic reticulum. The enzyme was shown to be inhibited by kifunensine and deoxymannojirimycin, indicating that it is a class I mannosidase. In addition, Man4GlcNAc2 species were produced at the expense of Glc1Man5GlcNAc2 species. Thus, the trimming of Man5GlcNAc2 to Man4GlcNAc2, which is catalyzed by this mannosidase, could be involved in the control of the glucose-dependent folding pathway.  相似文献   

7.
The lipid-linked oligosaccharide Glc3-Man9(GlcNAc)2 (Glc, glucose; Man, mannose; GlcNAc, N-acetylglucosamine) serves as a precursor for the biosynthesis of the inner core portion of the asparagine-linked polysaccharide of Saccharomyces cerevisiae mannoproteins. It has been shown previously that incubation of a microsomal preparation from this organism with UDP-N-acetylglucosamine and GDP-[14C]mannose gives rise to a series of lipid-linked oligosaccharides of the general structure Mann(GlcNAc)2, with n from 1 to 9. A structural characterization of Man1- to Man5(GlcNAc)2 oligosaccharides indicated that the major structures among these were identical to the intermediates proposed for the biosynthesis of animal glycoproteins (C. Prakash and I. K. Vijay, Biochemistry 21:4810-4818, 1982). In the present study, the structural characterization of the Man6- through Man9(GlcNAc)2 species was conducted. The Man6- through Man8(GlcNAc)2 species have two isomers, whereas Man9(GlcNAc)2 is monoisomeric. One isomer each of Man6- through Man8(GlcNAc)2 and the monoisomeric Man9(GlcNAc)2 are identical to the intermediates for the biosynthesis of asparagine-linked glycoproteins in animal systems. It is proposed that the steps of the lipid-linked assembly of the carbohydrate precursor for S. cerevisiae mannoproteins are identical to those of the major pathway in animal systems. A lack of acceptor substrate specificity by the mannosyltransferases, as observed with in vitro studies with animal systems, also might be responsible for the biosynthesis of multiple isomers reported here.  相似文献   

8.
Karaoglu D  Kelleher DJ  Gilmore R 《Biochemistry》2001,40(40):12193-12206
The oligosaccharyltransferase (OST) preferentially utilizes the fully assembled dolichol-linked oligosaccharide Glc(3)Man(9)GlcNAc(2)-PP-Dol as the donor for N-linked glycosylation of asparagine residues in N-X-T/S consensus sites in newly synthesized proteins. A wide variety of assembly intermediates (Glc(0-2)Man(0-9)GlcNAc(2)-PP-Dol) can serve as the donor substrate for N-linked glycosylation of peptide acceptor substrates in vitro or of nascent glycoproteins in mutant cells that are defective in donor substrate assembly. A kinetic mechanism that can account for the selection of the fully assembled donor substrate from a complex mixture of dolichol-linked oligosaccharides (OS-PP-Dol) has not been elucidated. Here, the steady-state kinetic properties of the OST were reinvestigated using a proteoliposome assay system consisting of the purified yeast enzyme, near-homogeneous preparations of a dolichol-linked oligosaccharide (Glc(3)Man(9)GlcNAc(2)-PP-Dol or Man(9)GlcNAc(2)-PP-Dol) and an (125)I-labeled tripeptide as the acceptor substrate. The K(m) of the OST for the acceptor tripeptide was only slightly enhanced when Glc(3)Man(9)GlcNAc(2)-PP-Dol was the donor substrate relative to when Man(9)GlcNAc(2)-PP-Dol was the donor substrate. Evaluation of the kinetic data for both donor substrates showed deviations from typical Michaelis-Menten kinetics. Sigmoidal saturation curves, Lineweaver-Burk plots with upward curvature, and apparent Hill coefficients of about 1.4 suggested a substrate activation mechanism involving distinct regulatory (activator) and catalytic binding sites for OS-PP-Dol. Results of competition experiments using either oligosaccharide donor as an alternative substrate were also consistent with this hypothesis. We propose that binding of either donor substrate to the activator site substantially enhances Glc(3)Man(9)GlcNAc(2)-PP-Dol occupancy of the enzyme catalytic site via allosteric activation.  相似文献   

9.
Gao N  Shang J  Lehrman MA 《Glycobiology》2008,18(1):125-134
GlcNAc-1-P transferase (GPT) transfers GlcNAc-1-P from UDP-GlcNAc to dolichol-P (Dol-P), forming GlcNAc-P-PDol to initiate synthesis of the lipid-linked oligosaccharide Glc3Man9GlcNAc2-P-P-dolichol (G3M9Gn2-P-P-Dol). Elevated expression of GPT in CHO-K1 cells is known to cause accumulation of the intermediate M5Gn2-P-P-Dol, presumably by excessively consuming Dol-P and thereby hindering Dol-P-dependent synthesis of Man-P-Dol (MPD) and Glc-P-Dol (GPD), which provide the residues for extending M5Gn2-P-P-Dol to G3M9Gn2-P-P-Dol. If so, elevated GPT expression should increase oligosaccharide-P-P-Dol quantities and reduce monosaccharide-P-Dol quantities, while requiring GPT enzymatic activity. Here we report that elevated GPT expression failed to appreciably alter the quantities of the two classes of dolichol-linked saccharide, and that neither a GPT inhibitor nor introduction of an inactivating mutation into GPT prevented M5Gn2-P-P-Dol accumulation,arguing against excessive Dol-P consumption. Unexpectedly,we noticed similarities between the phenotypes of GPT overexpressers and of CHO-K1 cells lacking Lec35p (encoded by MPDU1, the congenital disorder of glycosylation(CDG)-If locus), which is required for utilization of MPD and GPD. By compensatory overexpression of Lec35p, G3M9Gn2-P-P-Dol synthesis in GPT overexpressers could be restored. However, GPT overexpression did not affect the levels of Lec35 mRNA or protein. These results suggest that GPT may impair Lec35p function, and imply that upper as well as lower limits on GPT expression exist in normal cells. Since the mammalian GPT gene can undergo spontaneous amplification, the data also indicate a potential basis for forms of pseudo-CDG-If.  相似文献   

10.
As reported previously (Parodi, A.J., and Cazzulo, J.J. (1982) J. Biol. Chem. 257, 7641-7645), label was incorporated first to the glucose residues of protein-bound Glc1Man9GlcNAc2, Glc1Man8GlcNAc2, and Glc1Man7GlcNAc2 when Trypanosoma cruzi cells, the causative agent of Chagas disease, were incubated with [U-14C]glucose. It is now reported that the glucose residues are removed from the oligosaccharides after a chase period. The relative proportion of Man9GlcNAc2, Man8GlcNAc2, Man7GlcNAc2, and Man6GlcNAc2 appeared to be the same after 120 and 180 min of chase, thus indicating that these compounds were the fully processed protein-bound oligosaccharides. No complex type protein-bound oligosaccharides were detected. Evidence is presented indicating that Glc1Man7GlcNAc2 was formed mainly by glucosylation of Man7GlcNAc2 and not by demannosylation of Glc1Man9GlcNAc2. Man9GlcNAc2 was the first oligosaccharide to be labeled when cells were incubated with [2-3H]mannose. Based on these and previous results, the overall mechanism of protein N-glycosylation appeared to be: (formula; see text) The structure of the oligosaccharides appeared to be similar to some of those present in human glycoproteins. T. cruzi cells isolated from distant locations in South America were found to share a common mechanism of protein glycosylation.  相似文献   

11.
The trypanosomatids are generally aberrant in their protein N-glycosylation pathways. However, protein N-glycosylation in the African trypanosome Trypanosoma brucei, etiological agent of human African sleeping sickness, is not well understood. Here, we describe the creation of a bloodstream-form T. brucei mutant that is deficient in the endoplasmic reticulum enzyme glucosidase II. Characterization of the variant surface glycoprotein, the main glycoprotein synthesized by the parasite with two N-glycosylation sites, revealed unexpected changes in the N-glycosylation of this molecule. Structural characterization by mass spectrometry, nuclear magnetic resonance spectroscopy, and chemical and enzymatic treatments revealed that one of the two glycosylation sites was occupied by conventional oligomannose structures, whereas the other accumulated unusual structures in the form of Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc, and Glcalpha1-3Manalpha1-2Manalpha1-2Manalpha1-3(Galbeta1-4GlcNAcbeta1-2Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAc. The possibility that these structures might arise from Glc1Man9GlcNAc2 by unusually rapid alpha-mannosidase processing was ruled out using a mixture of alpha-mannosidase inhibitors. The results suggest that bloodstream-form T. brucei can transfer both Man9GlcNAc2 and Man5GlcNAc2 to the variant surface glycoprotein in a site-specific manner and that, unlike organisms that transfer exclusively Glc3Man9GlcNAc2, the T. brucei UDP-Glc: glycoprotein glucosyltransferase and glucosidase II enzymes can use Man5GlcNAc2 and Glc1Man5GlcNAc2, respectively, as their substrates. The ability to transfer Man5GlcNAc2 structures to N-glycosylation sites destined to become Man(4-3)GlcNAc2 or complex structures may have evolved as a mechanism to conserve dolichol-phosphate-mannose donors for glycosylphosphatidylinositol anchor biosynthesis and points to fundamental differences in the specificities of host and parasite glycosyltransferases that initiate the synthesis of complex N-glycans.  相似文献   

12.
The most frequent type of N-glycan synthesized by lepidopteran Sf9 cells appears to be fucosylated Man3GlcNAc2,and this has been a limitation for a large scale production and utilization of therapeutic glycoproteins in cultured insect cells. The current knowledge of the protein glycosylation pathway derived from structural studies on recombinant glyco-proteins expressed by using baculovirus vectors. In this work we provide more direct evidence for the sequential events occurring in the processing of endogenous N-glycoproteins of noninfected Sf9 cells. By metabolic labeling with radioactive mannose, we characterized the glycan structures which accumulated in the presence of processing inhibitors (castanospermine and swainsonine) and in the presence of an intracellular trafficking inhibitor (monensin). We thus demonstrated that from the glycan precursor Glc3Man9GlcNAc2 to GlcNAcMan5(Fuc)GlcNAc2 intermediate, the processing pathway in Sf9 cells paralleled the one demonstrated in mammalian cells. By using monensin, we demonstrated the formation of Man3(Fuc)GlcNAc2 from GlcNAcMan3(Fuc)GlcNAc2, a reaction which has not been described in mammalian cells. Our results support the idea that the hexosaminidase activity is of physiological relevance to the glycosylation pathway and is Golgi located.  相似文献   

13.
Formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 was detected in rat liver slices and Phaseolus vulgaris seeds incubated with [U-14C]glucose. Similar compounds were not synthesized in Saccharomyces cerevisiae cells incubated under similar conditions. Rat liver microsomes were incubated with [glucose-U-14C] Glc3Man9GlcNAc2-P-P-dolichol or UDP-[U-14C]Glc as glycosyl donors. Only in the latter condition protein-linked Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed. Addition of mannooligosaccharides that strongly inhibited alpha 1-2-mannosidases to incubation mixtures containing rat liver microsomes and UDP-[U-14C]Glc did not prevent formation of protein-bound Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 . Furthermore, the presence of amphomycin in reaction mixtures containing liver membranes and UDP-[U-14C]Glc completely abolished synthesis of glucosylated derivatives of dolichol without affecting formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 . The results reported above indicated that under the experimental conditions employed protein-bound Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 were formed by glucosylation of unglucosylated oligosaccharides. Results obtained in pulse-chase experiments performed in vitro also supported this conclusion. UDP-Glc appeared to be the donor of the glucosyl residues. The rough endoplasmic reticulum was found to be the main subcellular site of protein glucosylation. It is tentatively suggested that this process could prevent extensive degradation of oligosaccharides by mannosidases during transit of glycoproteins through the endoplasmic reticulum.  相似文献   

14.
Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis   总被引:11,自引:0,他引:11  
M D Snider  O C Rogers 《Cell》1984,36(3):753-761
The transport of sugar residues into the endoplasmic reticulum (ER) during glycoprotein synthesis was studied by examining the transmembrane orientations of the oligosaccharide-lipid precursors of asparagine-linked oligosaccharides. Using the lectin concanavalin A, the lipid-linked oligosaccharides Man3-5GlcNAc2 were found on the cytoplasmic side of ER-derived vesicles in vitro while lipid-linked Man6-9GlcNAc2 and Glc1-3Man9GlcNAc2 were found facing the lumen. These results suggest that Man5GlcNAc2-lipid is synthesized on the cytoplasmic side of the ER membrane and then translocated to the luminal side. Glc3Man9GlcNAc2-lipid is then completed on the luminal side where it serves as the donor in peptide glycosylation. Translocation of Man5GlcNAc2-lipid offers a mechanism for the export of sugar residues from the cytoplasm during glycoprotein synthesis. This translocation may be the reason for the participation of lipid-linked mono- and oligosaccharides in glycoprotein synthesis.  相似文献   

15.
Glucosidase II (Glc'ase II) is a glycan-processing enzyme that trims two alpha1,3-linked Glc residues in succession from the glycoprotein oligosaccharide Glc2Man9GlcNAc2 to give Glc1Man9GlcNAc2 and Man9GlcNAc2 in the endoplasmic reticulum (ER). Monoglucosylated glycans, such as Glc1-Man9GlcNAc2, generated by this process play a key role in glycoprotein quality control in the ER, because they are primary ligands for the lectin chaperones calnexin (CNX) and calreticulin (CRT). A precise analysis of the substrate specificity of Glc'ase II is expected to further our understanding of the molecular basis to glycoprotein quality control, because Glc'ase II potentially competes with CNX/CRT for the same glycans, Glc1Man7-9GlcNAc2. In this study, a quantitative analysis of the specificity of Glc'ase II using a series of structurally defined synthetic glycans was carried out. In the presence of CRT, Glc'ase II-mediated trimming from Glc2Man9GlcNAc2 stopped at Glc1Man9GlcNAc2, supporting the notion that the glycan structure delivered to the CNX/CRT cycle is Glc1Man9GlcNAc2. Unexpectedly, our experiments showed that Glc1Man8(B)GlcNAc2 had nearly the same reactivity as Glc1Man9GlcNAc2, which was markedly greater than that of its positional isomer Glc1Man8(C)GlcNAc2. An analysis with glycoprotein-like probes revealed the stepwise formation of Glc1Man9GlcNAc2 and Man9GlcNAc2 from Glc2Man9GlcNAc2, even in the presence of CRT. It was also shown that Glc1Man8(B)GlcNAc2 had even greater reactivity than Glc1Man9GlcNAc2 at the glycoprotein level. Moreover, inhibitory activities by nonglucosylated glycans suggested that Glc'ase II recognized the C arm (Manalpha1, 2Manalpha1, 6Man-) of high mannose-type glycans.  相似文献   

16.
Lec23 Chinese hamster ovary (CHO) cells have been shown to possess a unique lectin resistance phenotype and genotype compared with previously isolated CHO glycosylation mutants (Stanley, P., Sallustio, S., Krag, S. S., and Dunn, B. (1990) Somatic Cell Mol. Genet. 16, 211-223). In this paper, a biochemical basis for the lec23 mutation is identified. The carbohydrates associated with the G glycoprotein of vesicular stomatitis virus (VSV) grown in Lec23 cells (Lec23/VSV) were found to possess predominantly oligomannosyl carbohydrates that bound strongly to concanavalin A-Sepharose, eluted 3 sugar eq beyond a Man9GlcNAc marker oligosaccharide on ion suppression high pressure liquid chromatography, and were susceptible to digestion with jack bean alpha-mannosidase. Monosaccharide analyses revealed that the oligomannosyl carbohydrates contained glucose, indicating a defect in alpha-glucosidase activity. This was confirmed by further structural characterization of the Lec23/VSV oligomannosyl carbohydrates using purified rat mammary gland alpha-glucosidase I, jack bean alpha-mannosidase, and 1H NMR spectroscopy at 500 MHz. [3H]Glucose-labeled Glc3Man9GlcNAc was prepared from CHO/VSV labeled with [3H]galactose in the presence of the processing inhibitors castanospermine and deoxymannojirimycin. Subsequently, [3H]Glc2Man9GlcNAc was prepared by purified alpha-glucosidase I digestion of [3H]Glc3Man9GlcNAc. When these oligosaccharides were used as alpha-glucosidase substrates it was revealed that Lec23 cells are specifically defective in alpha-glucosidase I, a deficiency not previously identified among mammalian cell glycosylation mutants.  相似文献   

17.
We have isolated and characterized a new yeast mutation in the glucosylation steps of lipid-linked oligosaccharide biosynthesis, alg8-1. Cells carrying the alg8-1 mutation accumulate Glc1Man9GlcNAc2-lipid both in vivo and in vitro. We present evidence showing that the alg8-1 mutation blocks addition of the second alpha 1,3-linked glucose. alg8-1 cells transfer Glc1Man9GlcNAc2 to protein instead of the wild type oligosaccharide, Glc3Man9GlcNAc2. Pulse-chase studies indicate that the Glc1Man9GlcNAc2 transferred is processed more slowly than the wild type oligosaccharide. The yeast mutation gls1-1 lacks glucosidase I activity (Esmon, B., Esmon, P.C., and Schekman, R. (1984) J. Biol. Chem. 259, 10322-10327), the enzyme responsible for removing the alpha 1,2-linked glucose residues from protein-linked oligosaccharides. We demonstrate that gls1-1 cells contain glucosidase II activity (which removes alpha 1,3-linked glucose residues) and have constructed the alg8-1 gls1-1 haploid double mutant. The Glc1Man9GlcNAc2 oligosaccharide was trimmed normally in these cells, demonstrating that the alg8-1 oligosaccharide contained an alpha 1,3-linked glucose residue. A novel Glc2 compound was probably produced by the action of the biosynthetic enzyme that normally adds the alpha 1,2-linked glucose to lipid-linked Glc2Man9GlcNAc2. This enzyme may be able to slowly add alpha 1,2-linked glucose residue to protein-bound Glc1Man9GlcNAc2. The relevance of these findings to similar observations in other systems where glucose residues are added to asparagine-linked oligosaccharides and the possible significance of the reduced rate of oligosaccharide trimming in the alg mutants are discussed.  相似文献   

18.
Pentafluoropropionyl (PFP) and trifluoroacetyl (TFA) esters were demonstrated to be useful in facile oligosaccharide synthesis. These were well compatible with glycosylation conditions and removable by treatment with pyridine-EtOH, with complete preservation of acetyl groups. Analytically pure products were obtained quantitatively, simply by evaporating the reaction mixtures. Using O-PFP and O-TFA carrying glycosyl halides, trisaccharide (Manalpha1-->2Manalpha1-->2Man) and tetrasaccharide (Glcalpha1-->3Manalpha1-->2Manalpha1-->2Man) portions of monoglucosylated high-mannose type dodecasaccharide (Glc(1)Man(9)GlcNAc(2)), a putative ligand for the ER chaperon, calnexin and calreticulin, were synthesized.  相似文献   

19.
The neurogenic Drosophila genes brainiac and egghead are essential for epithelial development in the embryo and in oogenesis. Analysis of egghead and brainiac mutants has led to the suggestion that the two genes function in a common signaling pathway. Recently, brainiac was shown to encode a UDP-N-acetylglucosamine:beta Man beta 1,3-N-acetylglucosaminyltransferase (beta 3GlcNAc-transferase) tentatively assigned a key role in biosynthesis of arthroseries glycosphingolipids and forming the trihexosylceramide, GlcNAc beta 1-3Man beta 1-4Glc beta 1-1Cer. In the present study we demonstrate that egghead encodes a Golgi-located GDP-mannose:beta Glc beta 1,4-mannosyltransferase tentatively assigned a biosynthetic role to form the precursor arthroseries glycosphingolipid substrate for Brainiac, Man beta 1-4Glc beta 1-1Cer. Egghead is unique among eukaryotic glycosyltransferase genes in that homologous genes are limited to invertebrates, which correlates with the exclusive existence of arthroseries glycolipids in invertebrates. We propose that brainiac and egghead function in a common biosynthetic pathway and that inactivating mutations in either lead to sufficiently early termination of glycolipid biosynthesis to inactivate essential functions mediated by glycosphingolipids.  相似文献   

20.
Glucosylated oligomannose N-linked oligosaccharides (Glc(x)Man9GlcNAc2 where x = 1-3) are not normally found on mature glycoproteins but are involved in the early stages of glycoprotein biosynthesis and folding as (i) recognition elements during protein N-glycosylation and chaperone recognition and (ii) substrates in the initial steps of N-glycan processing. By inhibiting the first steps of glycan processing in CHO cells using the alpha-glucosidase inhibitor N-butyl-deoxynojirimycin, we have produced sufficient Glc3Man7GlcNAc2 for structural analysis by nuclear magnetic resonance (NMR) spectroscopy. Our results show the glucosyl cap to have a single, well-defined conformation independent of the rest of the saccharide. Comparison with the conformation of Man9GlcNAc2, previously determined by NMR and molecular dynamics, shows the mannose residues to be largely unaffected by the presence of the glucosyl cap. Sequential enzymatic cleavage of the glucose residues does not affect the conformation of the remaining saccharide. Modelling of the Glc3Man9GlcNAc2, Glc2Man9GlcNAc2 and Glc1Man9GlcNAc2 conformations shows the glucose residues to be fully accessible for recognition. A more detailed analysis of the conformations allows potential recognition epitopes on the glycans to be identified and can form the basis for understanding the specificity of the glucosidases and chaperones (such as calnexin) that recognize these glycans, with implications for their mechanisms of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号