首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new stable isotope procedure has been developed and validated in rats, applying [1-(13)C]acetate infusion to quantify the production of bile salts from de novo synthesized cholesterol making use of the mass isotopomer distribution analysis (MIDA) principle. Ions (m/z) 458-461, 370-373 and 285-288 were monitored by GC/MS (EI-mode) for the methyl trimethylsilylether derivatives of cholate, chenodeoxycholate and beta-muricholate, respectively. Rats with intact exteriorized enterohepatic circulation and rats with chronic bile diversion were infused with [1-(13)C]acetate for up to 14 h. After 10 h of infusion the enterohepatic circulation of the intact group was interrupted to deplete the existing bile salt pool (acute bile diversion). The fractions of biliary cholesterol and individual bile salts derived from newly synthesized cholesterol were determined by MIDA at t=14 h. In rats with acute bile diversion, these fractions were 20, 25, 27 and 23% for biliary cholesterol, cholate, chenodeoxycholate and beta-muricholate, respectively. After bile diversion for 8 days to induce hepatic cholesterol and bile salt synthesis, these fractions increased significantly to 32, 47, 41 and 47%, respectively. Calculated enrichments of the acetyl-CoA precursor pools were similar for all bile salts and biliary cholesterol within the two rat groups. However, chronic enterohepatic interruption decreased the acetyl-CoA pool size almost two-fold. We conclude that MIDA is a validated new stable isotope technique for studying the synthetic pathway from acetyl-CoA to bile salts. This technique provides an important new tool for studying bile salt metabolism in humans using stable isotopes.  相似文献   

2.
Mass spectrometric (MS) isotopomer analysis has become a standard tool for investigating biological systems using stable isotopes. In particular, metabolic flux analysis uses mass isotopomers of metabolic products typically formed from 13C-labeled substrates to quantitate intracellular pathway fluxes. In the current work, we describe a model-driven method of numerical bias estimation regarding MS isotopomer analysis. Correct bias estimation is crucial for measuring statistical qualities of measurements and obtaining reliable fluxes. The model we developed for bias estimation corrects a priori unknown systematic errors unique for each individual mass isotopomer peak. For validation, we carried out both computational simulations and experimental measurements. From stochastic simulations, it was observed that carbon mass isotopomer distributions and measurement noise can be determined much more precisely only if signals are corrected for possible systematic errors. By removing the estimated background signals, the residuals resulting from experimental measurement and model expectation became consistent with normality, experimental variability was reduced, and data consistency was improved. The method is useful for obtaining systematic error-free data from 13C tracer experiments and can also be extended to other stable isotopes. As a result, the reliability of metabolic fluxes that are typically computed from mass isotopomer measurements is increased.  相似文献   

3.
We evaluated the hypothesis that coordinated adjustments in absolute rates of gluconeogenesis (GNG(ab)) and hepatic glycogenolysis (Gly) would maintain euglycemia and match glucose production (GP) to peripheral utilization during rest and exercise. Specifically, we evaluated the extent to which gradations in exercise power output would affect the contribution of GNG(ab) to GP. For these purposes, we employed mass isotopomer distribution analysis (MIDA) and isotope-dilution techniques on eight postabsorptive (PA) endurance-trained men during 90 min of leg cycle ergometry at 45 and 65% peak O(2) consumption (VO(2 peak); moderate and hard intensities, respectively) and the preceding rest period. GP was constant in resting subjects, whereas the fraction from GNG (f(GNG)) increased over time during rest (22.3 +/- 0.9% at 11.25 h PA vs. 25.6 +/- 0.9% at 12.0 h PA, P < 0.05). In the transition from rest to exercise, GP increased in an intensity-dependent manner (rest, 2.0 +/- 0.1; 45%, 4.0 +/- 0.4; 65%, 5.84 +/- 0.64 mg. kg(-1). min(-1), P < 0.05), although glucose rate of disappearance exceeded rate of appearance during the last 30 min of exercise at 65% VO(2 peak). Compared with rest, increases in GP were sustained by 92 and 135% increments in GNG(ab) during moderate- and hard-intensity exercises, respectively. Correspondingly, Gly (calculated as the difference between GP and MIDA-measured GNG(ab)) increased 100 and 203% over rest during the two exercise intensities. During moderate-intensity exercise, f(GNG) was the same as at rest; however, during the harder exercise f(GNG) decreased significantly to account for only 21% of GP. The highest sustained GNG(ab) observed in these trials on PA men was 1.24 +/- 0.3 mg. kg(-1). min(-1). We conclude that, after an overnight fast, 1) absolute GNG rates increased with intensity of effort despite a reduced f(GNG) at 65% VO(2 peak), 2) during exercise Gly is more responsible than GNG(ab) for maintaining GP, and 3) in 12-h fasted men, neither increased Gly or GNG(ab) nor was their combination able to maintain euglycemia during prolonged hard (65% VO(2 peak)) exercise.  相似文献   

4.
An imbalance between triacylglycerol synthesis and breakdown is necessary for the development of obesity. The direct precursor for triacylglycerol biosynthesis is alpha-glycerol phosphate, which can have glycolytic and glyceroneogenic origins. We present a technique for determining the relative glyceroneogenic contribution to triacylglyceride glycerol by labeling the glycerol moiety with 2H2O. The number of hydrogen atoms (n) incorporated from H2O into C-H bonds reflects the metabolic source of alpha-glycerol phosphate and can be calculated by combinatorial analysis of the distribution of mass isotopomers in triacylglyceride glycerol. Three physiological settings with potential effects on glyceroneogenesis and glycolysis were studied in rodents. Adipose tissue acylglyceride glycerol in mice fed a low carbohydrate diet had significantly higher values of n than in mice fed a high carbohydrate diet, suggesting an increased contribution from glyceroneogenesis of from 17 to 50% on the low carbohydrate diet. Similarly, mice administered rosiglitazone had a significant relative increase in glyceroneogenesis (from 17 to 53%), indicated by an increase in adipose acylglyceride glycerol n. Fructose infusion in overnight fasted rats rapidly lowered plasma triacylglyceride glycerol n, reflecting a decreased contribution from glyceroneogenesis (from 66 to 34%) presumably because of increased glycolytic input. In conclusion, we demonstrate that the number of C-H atoms derived from cellular H2O in triacylglyceride glycerol is an informative indicator of alpha-glycerol phosphate origin and, ultimately, triacylglycerol metabolism. Under certain physiological conditions, glyceroneogenesis can be up-regulated in adipose (e.g. low carbohydrate diet) or down-regulated in liver (e.g. fructose infusion). Additionally, stimulation of glyceroneogenesis by rosiglitazone in adipose tissue may be an important factor in the antilipolytic actions of thiazolidinediones.  相似文献   

5.
We developed gas chromatography-mass spectrometry assays for the relative concentration and for the mass isotopomer distribution of gluconeogenic and citric acid cycle intermediates in tissues. The assay involves (i) spiking the sample with one or more internal standards, (ii) chloroform–methanol extraction at −25 °C, (iii) Folch wash of the extract, (iv) treatment of the water-methanol phase with methoxylamine, (v) evaporation and trimethylsilyl derivatization, and (vi) ammonia positive chemical ionization gas chromatography-mass spectrometry. For metabolomic computations, indices of concentrations for all compounds assayed are calculated as (Area of analyte)/(Area of reference compound). The assay was applied to a study of the effect of mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, on the profile of gluconeogenic intermediates in rat livers perfused with pyruvate. Crossover analysis of concentrations indices, compared to a control group, yielded very similar profiles as previous enzymatic assays, and correctly identified the site of action of mercaptopicolinate. Principal component analysis distinguished between control and drug treated samples. A loadings plot was used to identify the site of action of the drug in the metabolic pathway. Since metabolite concentrations do not address the flux through a pathway, perfusions with [1,4-13C2] succinate dimethylester were conducted to assess fluxes around PEPCK. This allowed a dynamic metabolomics analysis which indicated that considerable flux through the pathway remained in the presence of mercaptopicolinate. This study illustrates the power of dynamic metabolomics to complement concentration based metabolomic studies.
  相似文献   

6.
Tserng KY  Griffin RL 《Biochemistry》2004,43(25):8125-8135
The traditional (parallel) model of molecular species synthesis of phosphatidylcholine is based on the substrate specificity of two glycerolphosphate acyltransferases. Preformed molecular species of diacylglycerols are then converted to phosphatidylcholine. In this investigation, we used [1,2,3,4-(13)C(4)]palmitate as a tracer to determine the turnover rates of diacylglycerols and phosphatidylcholines. In HL60 cells, the fractional turnover rate is 34.1 +/- 16.6%/h for 1,2-dipalmitoylglycerophosphocholine (16:0,16:0-GPC), which accounts for approximately 10% of total diacylglycerol turnover. The turnover rates of other phosphotidylcholines reflect the primary event of 16:0,16:0-GPC turnover. In addition, the distribution of mass isotopomers is used to study the biosynthesis of diacylglycerols and phosphatidylcholines. On the basis of precursor-product enrichments, we propose a sequential model to account for the synthesis of phosphatidylcholine molecular species. In this model, 1,2-dipalmitoylglycerol is the only molecular species used for the synthesis of phosphatidylcholine. This precursor is converted to 1,2-dipalmitoylglycerophosphocholine, which is then deacylated to provide substrates for chain elongation and/or desaturation. These modified acyl substrates are then reacylated back to form other molecular species. This sequential model is consistent with palmitate being the dominant fatty acid product derived from mammalian fatty acid synthase. It has the advantage of protecting cells from acyl modification by exogenous substrates. Furthermore, this sequence generates only inert 1,2-dipalmitoylglycerol instead of the active diacylglycerol molecular species that contain unsaturated fatty acids.  相似文献   

7.
Inborn errors of cholesterol biosynthesis caused by dysfunctionality of single enzymes are known to cause severe malformation syndromes like X-linked chondrodysplasia punctata (CDPX2), CHILD syndrome or Smith–Lemli–Opitz-syndrome (SLOS). In this study we established the method of RNA interference (RNAi) for analyzing the molecular mechanisms underlying disrupted cholesterol biosynthesis. For different genes involved in the cholesterol biosynthesis pathway-NAD(P) dependent steroid dehydrogenase-like (NSDHL), 17-beta hydroxysteroid dehydrogenase type 7 (HSD17B7) and emopamil binding protein (EBP)-shRNA sequences were designed and tested for their effectiveness. For a better comparability of the experiments and to avoid different transfection efficiencies, examined shRNA sequences which reached a knock down of at least 80% were stably transfected in a HeLa cell line with a tetracycline-regulated expression (HeLa T-REx). These stable transfected cell lines represent novel tools for the analysis of cholesterol biosynthesis.  相似文献   

8.
To examine the mechanisms of copper incorporation during ceruloplasmin biosynthesis, we developed methods to resolve and identify apo and holoceruloplasmin. The identity of holoceruloplasmin was confirmed by oxidase activity staining, immunoblotting, 67Cu-ligand exchange, and 67Cu-ligand blotting. Following metabolic labeling of human liver and lung cell lines with 67Cu, newly synthesized holoceruloplasmin was detected in the culture media as two species with apparent molecular masses of 84 and 79 kDa. Pulse-chase studies demonstrate that exogenous copper is readily available for incorporation into newly synthesized ceruloplasmin and that the kinetics of apo and holoceruloplasmin synthesis and secretion are identical. Inhibition of N-linked glycosylation did not affect the rate or amount of copper incorporated into newly synthesized ceruloplasmin but did result in the secretion of a single 68-kDa holoceruloplasmin moiety. Despite differences in the kinetics of copper uptake between cell lines a linear rate of copper incorporation into newly synthesized ceruloplasmin was observed with no evidence of copper exchange following biosynthesis. Under the conditions studied, holoceruloplasmin accounted for less than 5% of the total ceruloplasmin synthesized and secreted by each cell line. The data indicate that copper is incorporated into newly synthesized ceruloplasmin early in the course of biosynthesis by a process independent of N-linked carbohydrate addition. This process of copper incorporation results in an apparent conformational change in the ceruloplasmin molecule which does not affect the secretory rate of the protein.  相似文献   

9.
Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule-receptor interactions, this technique has also been applied to study protein-protein complexes, such as mapping antibody-antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein-ligand interactions has had an impact on biology and drug discovery.  相似文献   

10.
Since most bio‐production processes are conducted in a batch or fed‐batch manner, the evaluation of metabolism with respect to time is highly desirable. Toward this aim, we applied 13C‐metabolic flux analysis to nonstationary conditions by measuring the mass isotopomer distribution of intracellular metabolites. We performed our analysis on batch cultures of wild‐type Escherichia coli, as well as on Pyk and Pgi mutants, obtained the fluxes and metabolite concentrations as a function of time. Our results for the wild‐type indicated that the TCA cycle flux tended to increase during growth on glucose. Following glucose exhaustion, cells controlled the branch ratio between the glyoxylate pathway and the TCA cycle, depending on the availability of acetate. In the Pyk mutant, the concentrations of glycolytic intermediates changed drastically over time due to the dumping and feedback inhibition caused by PEP accumulation. Nevertheless, the flux distribution and free amino acid concentrations changed little. The growth rate and the fluxes remained constant in the Pgi mutant and the glucose‐6‐phosphate dehydrogenase reaction was the rate‐limiting step. The measured fluxes were compared with those predicted by flux balance analysis using maximization of biomass yield or ATP production. Our findings indicate that the objective function of biosynthesis became less important as time proceeds on glucose in the wild‐type, while it remained highly important in the Pyk mutant. Furthermore, ATP production was the primary objective function in the Pgi mutant. This study demonstrates how cells adjust their metabolism in response to environmental changes and/or genetic perturbations in the batch cultivation. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

11.
Insights in molecular developmental biology in animals and humans are facilitating the understanding of pathophysiologic mechanisms in dysmorphogenesis or abnormalities in normal embryologic structural development. A milestone was recognition of the role of shh in morphogenesis of craniofacial structures, especially the development of holoprosencephaly. The dependence of hedgehog morphogens on cholesterol modification for normal hedgehog signaling function has particular relevance to disorders of cholesterol synthesis which manifest dysmorphogenesis. Four human disorders of morphogenesis (Smith-Lemli-Opitz syndrome, desmosterolosis, X-linked chondrodysplasia punctata, CHILD syndrome) have recently been shown to be caused by sterol abnormalities resulting from cholesterol biosynthesis enzyme deficiencies. This review summarizes the clinical, biochemical and molecular data in these disorders with an emphasis on understanding the pathophysiology of dysmorphogenesis.  相似文献   

12.
Measurement of fractional lipogenesis by condensation polymerization methods assumes constant enrichment of lipogenic acetyl-CoA in all hepatocytes. mass isotopomer distribution analysis (MIDA) and isotopomer spectral analysis (ISA) represent such methods and are based on the combinatorial analyses of mass isotopomer distributions (MIDs) of fatty acids and sterols. We previously showed that the concentration and enrichment of [13C]acetate decrease markedly across the dog liver because of the simultaneous uptake and production of acetate. To test for zonation of the enrichment of lipogenic acetyl-CoA, conscious dogs, prefitted with transhepatic catheters, were infused with glucose and [1,2-13C2]acetate in a branch of the portal vein. Analyses of MIDs of fatty acids and sterols isolated from liver, bile, and plasma very low density lipoprotein by a variant of ISA designed to detect gradients in precursor enrichment revealed marked zonation of enrichment of lipogenic acetyl-CoA. As control experiments where no zonation of acetyl-CoA enrichment would be expected, isolated rat livers were perfused with 10 mm [1,2-13C2]acetate. The ISA analyses of MIDs of fatty acids and sterols from liver and bile still revealed a zonation of acetyl-CoA enrichment. We conclude that zonation of hepatic acetyl-CoA enrichment occurs under a variety of animal models and physiological conditions. Failure to consider gradients of precursor enrichment can lead to underestimations of fractional lipogenesis calculated from the mass isotopomer distributions. The degree of such underestimation was modeled in vitro, and the data are reported in the companion paper (Bederman, I. R., Kasumov, T., Reszko, A. E., David, F., Brunengraber, H., and Kelleher, J. K. (2004) J. Biol. Chem. 279, 43217-43226).  相似文献   

13.
Protonated molecular peptide ions and their product ions generated by tandem mass spectrometry appear as isotopologue clusters due to the natural isotopic variations of carbon, hydrogen, nitrogen, oxygen, and sulfur. Quantitation of the isotopic composition of peptides can be employed in experiments involving isotope effects, isotope exchange, and isotopic labeling by chemical reactions and in studies of metabolism by stable isotope incorporation. Both ion trap and quadrupole-time of flight mass spectrometry are shown to be capable of determining the isotopic composition of peptide product ions obtained by tandem mass spectrometry with both precision and accuracy. Tandem mass spectra of clusters of isotopologue ions obtained in profile mode are fit by nonlinear least squares to a series of Gaussian peaks which quantify the Mn/M0 values which define the isotopologue distribution (ID). To determine the isotopic composition of product ions from their ID, a new algorithm that predicts the Mn/M0 ratios and obviates the need to determine the intensity of all of the ions of an ID is developed. Consequently a precise and accurate determination of the isotopic composition of a product ion may be obtained from only the initial values of the ID, however, the entire isotopologue cluster must be isolated prior to fragmentation. Following optimization of the molecular ion isolation width, fragmentation energy, and detector sensitivity, the presence of isotopic excess (2H, 13C, 15N, 18O) is readily determined within 1%. The ability to determine the isotopic composition of sequential product ions permits the isotopic composition of individual amino acid residues in the precursor ion to be determined.  相似文献   

14.
15.
The relationship between cell growth state and the metabolism and distribution of cellular cholesterol was studied in human skin fibroblasts. Cells made quiescent by serum starvation maintained a smaller fraction of total free cholesterol in a pool susceptible to oxidation by added cholesterol oxidase compared to growing cells. The growth-related differences in the distribution of free cholesterol were magnified in cells which were preincubated in low-density lipoprotein. These latter cells hydrolyzed cholesteryl ester which had accumulated in the presence of LDL, resulting in an increased level of cellular free cholesterol after growth activation. By preincubating cells in [3H]cholesterol linoleate-labeled LDL, it could be demonstrated that activation of cell growth facilitated the appearance of LDL-derived cholesterol in a pool accessible to cholesterol oxidase. These studies suggest that onset of growth in fibroblasts leads to a redistribution of free cholesterol from intracellular to plasma membrane compartments. Furthermore, activation of cell growth in cholesterol loaded cells leads to the net conversion of cholesteryl ester to free cholesterol and most of the latter is in the plasma membrane.  相似文献   

16.
17.
18.
In this second of two companion articles, we compare the mass isotopomer distribution of metabolites of liver gluconeogenesis and citric acid cycle labeled from NaH(13)CO(3) or dimethyl [1,4-(13)C(2)]succinate. The mass isotopomer distribution of intermediates reveals the reversibility of the isocitrate dehydrogenase + aconitase reactions, even in the absence of a source of alpha-ketoglutarate. In addition, in many cases, a number of labeling incompatibilities were found as follows: (i) glucose versus triose phosphates and phosphoenolpyruvate; (ii) differences in the labeling ratios C-4/C-3 of glucose versus (glyceraldehyde 3-phosphate)/(dihydroxyacetone phosphate); and (iii) labeling of citric acid cycle intermediates in tissue versus effluent perfusate. Overall, our data show that gluconeogenic and citric acid cycle intermediates cannot be considered as sets of homogeneously labeled pools. This probably results from the zonation of hepatic metabolism and, in some cases, from differences in the labeling pattern of mitochondrial versus extramitochondrial metabolites. Our data have implications for the use of labeling patterns for the calculation of metabolic rates or fractional syntheses in liver, as well as for modeling liver intermediary metabolism.  相似文献   

19.
Exchange proteins directly activated by cAMP (Epac) play important roles in mediating the effects of cAMP through the activation of downstream small GTPases, Rap. To delineate the mechanism of Epac activation, we probed the conformation and structural dynamics of Epac using amide hydrogen/deuterium exchange and structural modeling. Our studies show that cAMP induces significant conformational changes that lead to a spatial rearrangement of the regulatory components of Epac and allows the exposure of the catalytic core for effector binding without imposing significant conformational change on the catalytic core. Homology modeling and comparative structural analyses of the cAMP binding domains of Epac and cAMP-dependent protein kinase (PKA) lead to a model of Epac activation, in which Epac and PKA activation by cAMP employs the same underlying principle, although the detailed structural and conformational changes associated with Epac and PKA activation are significantly different.  相似文献   

20.
Cholesterol and analogues of cholesterol bearing shorter side chains were incorporated into rat platelet membranes by incubation with sterol-rich liposomes in vitro. Cholesterol-enriched platelets showed increased aggregability to collagen compared with controls. Platelets containing the cholesterol analogues pregn-5-en-3β-ol and chol-5-en-3β-ol were even more sensitive to aggregation and could aggregate spontaneously on stirring. The size of the platelets containing pregn-5-en-3β-ol was markedly reduced when compared with controls in the scanning electron microscope. The results suggest that the sterol content and structure of the platelet membrane can have a critical role in maintaining the normal function of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号