共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Aldrin epoxidation was studied in monooxygenase systems reconstituted from purified rat liver microsomal cytochrome P-450 or P-448, NADPH-cytochrome c reductase, dilauroylphosphatidylcholine and sodium cholate. Cytochrome P-450, purified from hepatic microsomes of phenobarbital-treated rats, exhibited a high rate of dieldrin formation. The low enzyme activity observed in the absence of the lipid and sodium cholate was increased threefold by addition of dilauroylphosphatidylcholine and was further stimulated twofold by addition of sodium cholate. The apparent Km for aldrin in the complete system was 7 +/- 2 microM. SKF 525-A, at a concentration of 250 microM, inhibited aldrin epoxidation by 65%, whereas 7,8-benzoflavone had no inhibitory effect at concentrations up to 250 microM. Addition of ethanol markedly increased epoxidase activity. The increase was threefold in the presence of 5% ethanol. When cytochrome P-448 purified from hepatic microsomes of 3-methylcholanthrene-treated rats was used, a very low rate of epoxidation was observed which was less than 3% of the activity mediated by cytochrome P-450 under similar assay conditions. Enzyme activity was independent of the lipid factor dilauroylphosphatidylcholine. The apparent Km for aldrin was 27 +/- 7 microM. The modifiers of monooxygenase reactions, 7,8-benzoflavone, SKF 525-A and ethanol, inhibited the activity mediated by cytochrome P-448. The I50 was 0.05, 0.2 and 800 mM, respectively. These results indicate that aldrin is a highly selective substrate for cytochrome P-450 species present in microsomes of phenobarbital-treated animals and is a poor substrate for cytochrome P-448. The two forms of aldrin epoxidase can be characterised by their turnover number, their apparent Km and their sensitivity to modifiers, like 7,8-benzoflavone and ethanol. 相似文献
5.
The in vivo turnover of rat liver microsomal epoxide hydrolase and both the apoprotein and heme moieties of specific cytochrome P-450 isozymes 总被引:3,自引:0,他引:3
A Parkinson P E Thomas D E Ryan W Levin 《Archives of biochemistry and biophysics》1983,225(1):216-236
The in vivo turnover rates of liver microsomal epoxide hydrolase and both the heme and apoprotein moieties of cytochromes P-450a, P-450b + P-450e, and P-450c have been determined by following the decay in specific radioactivity from 2 to 96 h after simultaneous injections of NaH14CO3 and 3H-labeled delta-aminolevulinic acid to Aroclor 1254-treated rats. Total liver microsomal protein was characterized by an apparent biphasic exponential decay in specific radioactivity, with half-lives of 5-9 and 82 h for the fast- and slow-phase components, respectively. Most (approximately 90%) of the rapidly turning over microsomal protein fraction was immunologically distinct from membrane-associated serum protein, and thus appeared to represent integral membrane proteins. The existence of two distinct populations of cytochrome P-450a was suggested by the apparent biphasic turnover of both the heme and apoprotein moieties of the holoenzyme. The half-lives of the apoprotein were estimated to be 12 and 52 h for the fast- and slow-phase components, respectively, and 7 and 34 h for the heme moiety. The turnover of cytochromes P-450b + P-450e was identical to that of cytochrome P-450c, with half-lives of 37 and 28 h for the apoprotein and heme moieties, respectively. In all cases, the shorter half-lives of the heme component compared to the protein component were statistically significant. In contrast to the cytochrome P-450 isozymes, epoxide hydrolase (t1/2 = 132 h) turned over slower than the "average" microsomal protein (t1/2 = 82 h). The differential rates of degradation of these major integral membrane proteins during both the rapid and slow phases of total microsomal protein turnover argue against the concepts of unit membrane degradation and unidirectional membrane flow of liver endoplasmic reticulum. 相似文献
6.
F J Gonzalez M Samore P McQuiddy C B Kasper 《The Journal of biological chemistry》1982,257(18):11032-11036
7.
8.
The biosynthesis of cytochrome P-450 in vitro 总被引:1,自引:0,他引:1
9.
Filter-hybridization studies show that major phenobarbital and pregnenolone-16alpha-carbonitrile-inducible cytochrome P-450 mRNAs in rats were encoded by members of separate, distinct gene families. These gene families are genetically divergent from each and show no cross-hybridization, even under low-stringency conditions. Furthermore, sequences contained in the P-450PB and P-450PCN gene families map to separate chromosomes of the mouse genome. Using mouse X Chinese hamster somatic cell hybrids (EBS cell lines), all distinguishable P-450PCN sequences were found to map to chromosome 6, whereas all P-450PB sequences were located on chromosome 7. Our data support the proposition that the region of the Coh locus on chromosome 7 is the site of the cytochrome P-450PB gene family. The presence of gene families for the cytochromes P-450 occurs in many mammalian species and is likely an important part of the mechanism by which the mixed-function oxidase system is capable of recognizing and metabolizing such a wide array of endogenous and foreign compounds. Conversely, NADPH-cytochrome P-450 oxidoreductase appears to be encoded in many vertebrate species by a single gene and is located on chromosome 6 of the mouse. Corroboratory data are presented to show that the Eph-1 locus on chromosome 1 is the site of at least one microsomal epoxide hydratase gene. 相似文献
10.
Processing-independent in vitro translocation of cytochrome P-450(SCC) precursor across mitochondrial membranes 总被引:2,自引:0,他引:2
In the presence of a membrane-permeable metal chelator, bovine adrenal cortex mitochondria imported P-450(SCC) precursor without processing of the amino-terminal extension peptide. The imported precursor was bound to the matrix side surface of the inner membrane. When the inhibition due to the metal chelator was removed, the imported precursor was processed to the mature form. Unprocessed precursor was also detected in mitochondria when the import reaction was carried out at relatively low temperature. These results suggest that the translocation of P-450(SCC) precursor across mitochondrial membranes is independent of its processing to the mature form. Both membrane-bound and solubilized P-450(SCC) could be cleaved by trypsin into two fragments with molecular weights of 29 kDa and 26 kDa, respectively, suggesting a two-domain structure of the molecule. The in vitro-imported and processed P-450(SCC) was also cleaved by trypsin in the same way. This finding indicated that the in vitro-imported and processed P-450(SCC) has the same conformation as the native form. 相似文献
11.
12.
The regularities of changes in the functional activity of the microsomal monooxygenase system reconstituted by self-assembly from intact rat liver microsomes solubilized with 4% sodium cholate were studied at variable levels of NADPH-cytochrome P-450 reductase and the 3-methylcholanthrene-induced form of cytochrome P-450. Using antibodies against cytochrome P-448, the role of cytochrome P-448 in the overall reaction of benzopyrene hydroxylation induced in the microsomal membrane by a set of molecular forms of cytochrome P-450 was investigated. The effect of NADPH-cytochrome P-450 reductase and cytochrome P-448 incorporation into reconstituted microsomal membranes on benzpyrene metabolism suggests that in intact microsomal membranes benzopyrene metabolism induced by different forms of cytochrome P-450, with the exception of P-448, is limited by reductase is not the limiting component; however, cytochrome P-448 reveals its maximum activity at the cytochrome to reductase optimal molar ratio of 5:1; above this level, the catalytic activity of cytochrome P-448 is lowered. 相似文献
13.
Purified cytochrome P-450(17)alpha,lyase from guinea-pig adrenal microsomes, which catalyzes progesterone 17 alpha-hydroxylation and sequentially C17-C20 bond cleavage of the 17 alpha-hydroxyprogesterone, was successfully incorporated into liposomal membranes composed of only phosphatidylcholine or of a phospholipid mixture of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine at a molar ratio of 5:3:1. Although the purified P-450(17)alpha,lyase was readily converted into P-420 in the detergent-solubilized system without substrates, the P-450 embedded in the liposomal membranes was found to be quite stable without the substrates. Using the P-450(17)alpha,lyase-proteoliposomes, the interaction of steroids with P-450(17)alpha,lyase was studied for progesterone, 17 alpha-hydroxyprogesterone and androstenedione in the liposomal system by optical difference spectroscopy and by equilibrium dialysis. The partition coefficients of steroids between the aqueous phase and the liposomal membranes were determined by the equilibrium dialysis. They were about 1.4-1.6-times higher in phosphatidylcholine liposomes than in the liposomes of the lipid mixture. The dissociation constants of the P-450-steroid complexes were calculated from the apparent dissociation constants using the partition coefficients for the situation where the substrate-binding site faces the lipid phase of the membranes or where it faces the aqueous phase. The dissociation constant in the former case was not affected by the lipid composition. These results suggest that P-450(17)alpha,lyase might interact only with the substrates in the lipid phase of the liposomal membranes. 相似文献
14.
Y Okada A B Frey T M Guenthner F Oesch D D Sabatini G Kreibich 《European journal of biochemistry》1982,122(2):393-402
15.
Immunoquantification of epoxide hydrolase and cytochrome P-450 isozymes in fetal and adult human liver microsomes 总被引:4,自引:0,他引:4
T Cresteil P Beaune P Kremers C Celier F P Guengerich J P Leroux 《European journal of biochemistry》1985,151(2):345-350
Epoxide hydrolase and three cytochrome P-450 isozymes were immunochemically determined in microsomes from adult and fetal human liver and tentatively correlated with some enzyme activities. The P-450 isozymes 5, 8 and 9 present in adult liver could not be positively correlated with the total cytochrome P-450 concentration spectrophotometrically determined. In fetal liver microsomes, isozyme 8 could not be detected by either electrophoretic or immunochemical procedures. Isozyme 5 was the major isozyme present in the fetal liver and its concentration increased in close relation with the total P-450 level. As shown previously, arylhydrocarbon hydroxylase activity was related to the concentration of isozyme 8 in adult liver. In fetal preparations, the absence of isozyme 8 was associated with a very low arylhydrocarbon hydroxylase activity. Aldrin epoxidase and benzphetamine-N-demethylase activities were correlated with isozyme 5 concentration, but with different slopes for adult and fetal microsomes: adult preparations catalyzed these two reactions more efficiently. Conversely, the dehydroepiandrosterone 16 beta-hydroxylase, also associated with isozyme 5 concentration, was more active in fetal than in adult microsomes. Moreover, if acetanilide hydroxylase increased with isozyme 5 concentration in adult samples, no correlation occurred between activity and P-450 isozyme level in fetal microsomes. Hydroxylations of lauric acid in positions 11 and 12 and of dehydroepiandrosterone in position 16 alpha increased with total P-450 concentration but not with isozyme concentrations whatever the age considered. Lastly, epoxide hydrolase activity towards benzopyrene 4,5-oxide was closely associated with its immunochemically determined level. These results clearly suggest that multiple mechanisms are involved in the regulation of different drug-metabolizing enzymes in the human fetus. 相似文献
16.
17.
Upon incubation of detergent-solubilized NADPH-cytochrome P-450 reductase and either cytochrome b5 or cytochrome c in the presence of a water-soluble carbodiimide, a 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), covalently cross-linked complex was formed. The cross-linked derivative was a heterodimer consisting of one molecule each of flavoprotein and cytochrome, and it was purified to 90% or more homogeneity. The binary covalent complex between the flavoprotein and cytochrome b5 was exclusively observed following incubation of all three proteins including NADPH-cytochrome P-450 reductase, cytochrome b5, and cytochrome c in L-alpha-dimyristoylphosphatidylcholine vesicles, and no heterotrimer could be identified. The isolated reductase-cytochrome b5 complex was incapable of covalent binding with cytochrome c in the presence of EDC. No clear band for covalent complex formation between PB-1 and reductase was seen with the present EDC cross-linking technique. More than 90% of the cross-linked cytochrome c in the purified derivative was rapidly reduced upon addition of an NADPH-generating system, whereas approximately 80% of the cross-linked cytochrome b5 was rapidly reduced. These results showed that in the greater part of the complexes, the flavin-mediated pathway for reduction of cytochrome c or cytochrome b5 by pyridine nucleotide was intact. When reconstituted into phospholipid vesicles, the purified amphipathic derivative could hardly reduce exogenously added cytochrome c, cytochrome b5, or PB-1, indicating that the cross-linked cytochrome shields the single-electron-transferring interface of the flavoprotein. These results suggest that the covalent cross-linked derivative is a valid model of the noncovalent functional electron-transfer complex. 相似文献
18.
Diethylnitrosamine (DENA) intoxication of rats was accompanied by a reduction of cytochrome P-450 content in the liver, which correlated well with inactivation of cytochrome P-450 during metabolism of DENA in the liver microsomes. 相似文献
19.
Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles 总被引:2,自引:0,他引:2
J Gut C Richter R J Cherry K H Winterhalter S Kawato 《The Journal of biological chemistry》1982,257(12):7030-7036
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles using a cholate dialysis technique. The co-reconstitution of the enzymes was demonstrated in proteoliposomes fractionated by centrifugation in a glycerol gradient. The proteoliposomes catalyzed the N-demethylation of a variety of substrates. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. The rotational mobility of cytochrome P-450, when reconstituted alone, was found to be dependent on the lipid to protein ratio by weight (L/P450) (Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1982) J. Biol. Chem. 257, 7023-7029). About 35% of cytochrome P-450 was immobilized and the rest was rotating with a mean rotational relaxation time phi 1 of about 95 mus in L/P450 = 1 vesicle. In L/P450 = 10 vesicles, about 10% of P-450 was immobile and the rest was rotating with phi 1 congruent to 55 mus. Co-reconstitution of equimolar amounts of NADPH-cytochrome P-450 reductase into the above vesicles results in completely mobile cytochrome P-450 with a phi 1 congruent to 40 mus. Only a small decrease in the immobile fraction of cytochrome P-450 is observed when the molar ratio of cytochrome P-450 to the reductase is 5. The results suggest the formation of a monomolecular 1:1 complex between cytochrome P-450 and NADPH-cytochrome P-450 reductase in the liposomes. 相似文献
20.
The in vivo turnover of several rat liver microsomal proteins was studied using techniques designed to maximize antibody recognition specificity and minimize reutilization of radioactive labels. The kinetics of degradation of seven cytochrome P-450 isozymes, NADPH-cytochrome P-450 reductase, and epoxide hydrolase were determined in untreated rats and rats treated with phenobarbital or beta-naphthoflavone. In the cases where induction of these enzymes occurred with the above chemicals, rates of synthesis of the proteins were also estimated. In general, the degradation rates of the different proteins were rather similar to each other, and the effects of phenobarbital and beta-naphthoflavone on these rates were not very great. However, in the case of cytochromes P-450, a general trend was observed in which the heme moiety was degraded more rapidly than the apoprotein. Changes in the rates of synthesis of the individual proteins appear to contribute more to the altered steady-state levels which are expressed than do the rates of degradation, and profiles of steady-state enzyme concentrations predicted by the kinetic constants approximate those observed in vivo. 相似文献