首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The instability of the fushi tarazu (ftz) mRNA is essential for the proper development of the Drosophila embryo. Previously, we identified a 201-nucleotide instability element (FIE3) in the 3' untranslated region (UTR) of the ftz mRNA. Here we report on the identification of two additional elements in the protein-coding region of the message: the 63-nucleotide-long FIE5-1 and the 69-nucleotide-long FIE5-2. The function of both elements was position-dependent; the same elements destabilized RNAs when present within the coding region but did not when embedded in the 3' UTR of the hybrid mRNAs. We conclude that ftz mRNA has three redundant instability elements, two in the protein-coding region and one in the 3' UTR. Although each instability element is sufficient to destabilize a heterologous mRNA, the destabilizing activity of the two 5'-elements depended on their position within the message.  相似文献   

2.
3.
Localized translation of axonal mRNAs contributes to developmental and regenerative axon growth. Although untranslated regions (UTRs) of many different axonal mRNAs appear to drive their localization, there has been no consensus RNA structure responsible for this localization. We recently showed that limited expression of ZBP1 protein restricts axonal localization of both β‐actin and GAP‐43 mRNAs. β‐actin 3′UTR has a defined element for interaction with ZBP1, but GAP‐43 mRNA shows no homology to this RNA sequence. Here, we show that an AU‐rich regulatory element (ARE) in GAP‐43′s 3′UTR is necessary and sufficient for its axonal localization. Axonal GAP‐43 mRNA levels increase after in vivo injury, and GAP‐43 mRNA shows an increased half‐life in regenerating axons. GAP‐43 mRNA interacts with both HuD and ZBP1, and HuD and ZBP1 co‐immunoprecipitate in an RNA‐dependent fashion. Reporter mRNA with the GAP‐43 ARE competes with endogenous β‐actin mRNA for axonal localization and decreases axon length and branching similar to the β‐actin 3′UTR competing with endogenous GAP‐43 mRNA. Conversely, over‐expressing GAP‐43 coding sequence with its 3′UTR ARE increases axonal elongation and this effect is lost when just the ARE is deleted from GAP‐43′s 3′UTR.

  相似文献   


4.
Meiotic cell‐cycle progression in progesterone‐stimulated Xenopus oocytes requires that the translation of pre‐existing maternal mRNAs occur in a strict temporal order. Timing of translation is regulated through elements within the mRNA 3′ untranslated region (3′ UTR), which respond to cell cycle‐dependant signalling. One element that has been previously implicated in the temporal control of mRNA translation is the cytoplasmic polyadenylation element (CPE). In this study, we show that the CPE does not direct early mRNA translation. Rather, early translation is directed through specific early factors, including the Musashi‐binding element (MBE) and the MBE‐binding protein, Musashi. Our findings indicate that although the cyclin B5 3′ UTR contains both CPEs and an MBE, the MBE is the critical regulator of early translation. The cyclin B2 3′ UTR contains CPEs, but lacks an MBE and is translationally activated late in maturation. Finally, utilizing antisense oligonucleotides to attenuate endogenous Musashi synthesis, we show that Musashi is critical for the initiation of early class mRNA translation and for the subsequent activation of CPE‐dependant mRNA translation.  相似文献   

5.
6.
Nanos (Nos) is an evolutionary conserved protein expressed in the germline of various animal species. In Drosophila, maternal Nos protein is essential for germline development. In the germline progenitors, or the primordial germ cells (PGCs), Nos binds to the 3′ UTR of target mRNAs to repress their translation. In contrast to this prevailing role of Nos, here we report that the 3′ UTR of CG32425 mRNA mediates Nos‐dependent RNA stabilization in PGCs. We found that the level of mRNA expressed from a reporter gene fused to the CG32425 3′ UTR was significantly reduced in PGCs lacking maternal Nos (nos PGCs) as compared with normal PGCs. By deleting the CG32425 3′ UTR, we identified the region required for mRNA stabilization, which includes Nos‐binding sites. In normal embryos, CG32425 mRNA was maternally supplied into PGCs and remained in this cell type during embryogenesis. However, as expected from our reporter assay, the levels of CG32425 mRNA and its protein product expressed in nos PGCs were lower than in normal PGCs. Thus, we propose that Nos protein has dual functions in translational repression and stabilization of specific RNAs to ensure proper germline development.  相似文献   

7.
8.
9.
10.
11.
Abstract

Deadenylation of eukaryotic mRNA is a mechanism critical for mRNA function by influencing mRNA turnover and efficiency of protein synthesis. Here, we review poly(A)-specific ribonuclease (PARN), which is one of the biochemically best characterized deadenylases. PARN is unique among the currently known eukaryotic poly(A) degrading nucleases, being the only deadenylase that has the capacity to directly interact during poly(A) hydrolysis with both the m7G-cap structure and the poly(A) tail of the mRNA. In short, PARN is a divalent metal-ion dependent poly(A)-specific, processive and cap-interacting 3′–5′ exoribonuclease that efficiently degrades poly(A) tails of eukaryotic mRNAs. We discuss in detail the mechanisms of its substrate recognition, catalysis, allostery and processive mode of action. On the basis of biochemical and structural evidence, we present and discuss a working model for PARN action. Models of regulation of PARN activity by trans-acting factors are discussed as well as the physiological relevance of PARN.  相似文献   

12.
Leptinotarsa decemlineata adults exhibit a season-dependent activity. In spring, post-diapause beetles often fly a long distance from overwintering sites to potato fields. In summer and autumn, the flight ability is sharply reduced. Proline is the main energy substrate ofL. decemlineata during flight and proline dehydrogenase (ProDH) catalyzes the first step in proline catabolism. Here we identified a putative LdProDHgene; it had three cDNA isoforms which shared the same 5'UTR and coding region, but differed in the lengths of 3'UTRs (515, 1 092 and 1 242 bp for isoforms-1, -2 and -3, respectively). LdProDH encoded a 616 amino acid protein that showed high sequence similarity to ProDH-like proteins from other insect species. LdProDHwas expressed in the third and fourth instars larvae and adults, but not in pupae. Dietary ingestion of bacterially expressed LdProDH- dsRNA by adults significantly decreased its messenger RNA (mRNA) level, and caused an elevation of free proline content in the hemolymph. Further observation revealed that three canonical polyadenylation signals (AATAAA) were tandemly located in the 3'UTR of isoform-3. The first, second and third polyadenylation sites gave rise to isoforms-1, -2 and -3, respectively. Analysis of the genomic DNA uncovered that the three isoforms resulted from alternative polyadenylation. The mRNA level of isoform-1, which expressed at low levels in pre-diapause adults, became abundant in post-diapause beetles. It is indicated that the LdProDH expression is fine-tuned through 3'UTR to control proline catabolism for the season-dependent activity ofL. decemlineata adults.  相似文献   

13.
Activin is a potent mesoderm inducing factor present in embryos of Xenopus laevis. Recent evidence has implicated activin in the inhibition of neural development in addition to the well-established induction of mesoderm in ectodermal explants. These diverse effects are critically dependent on the concentration of activin yet little is known about the mechanisms regulating the level of activin in the embryo. We report that the 3′ untranslated region (3′ UTR) of activin βB mRNA inhibits the translation of activin in embryos. Microinjection of activin mRNA from which the 3′ UTR has been deleted is 8–10-fold more potent in inducing mesoderm than mRNA containing the 3′ UTR. Truncation of the 3′ UTR also leads to a marked enhancement of activin protein levels in embryos but has no effect when the truncated mRNA is translated in vitro. The 3′ UTR also confers translational inhibition on a heterologous mRNA. These data show that a maternal factor(s) present in X. laevis regulates the translation of injected activin βB mRNA. This factor(s) could be responsible for regulating the levels of endogenous activin βB protein during mesoderm induction and the specification of ectodermal derivatives such as neural and epidermal tissues. © 1995 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
17.
18.
19.
20.
A transient expression system based on a deleted version of Cowpea mosaic virus (CPMV) RNA‐2, termed CPMV‐HT, in which the sequence to be expressed is positioned between a modified 5′ UTR and the 3′ UTR has been successfully used for the plant‐based expression of a wide range of proteins, including heteromultimeric complexes. While previous work has demonstrated that alterations to the sequence of the 5′ UTR can dramatically influence expression levels, the role of the 3′ UTR in enhancing expression has not been determined. In this work, we have examined the effect of different mutations in the 3′UTR of CPMV RNA‐2 on expression levels using the reporter protein GFP encoded by the expression vector, pEAQexpress‐HT‐GFP. The results showed that the presence of a 3′ UTR in the CPMV‐HT system is important for achieving maximal expression levels. Removal of the entire 3′ UTR reduced expression to approximately 30% of that obtained in its presence. It was found that the Y‐shaped secondary structure formed by nucleotides 125–165 of the 3′ UTR plays a key role in its function; mutations that disrupt this Y‐shaped structure have an effect equivalent to the deletion of the entire 3′ UTR. Our results suggest that the Y‐shaped secondary structure acts by enhancing mRNA accumulation rather than by having a direct effect on RNA translation. The work described in this paper shows that the 5′ and 3′ UTRs in CPMV‐HT act orthogonally and that mutations introduced into them allow fine modulation of protein expression levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号