共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ubiquitin-proteasome system plays an important role in synaptic development and function. However, many components of this system, and how they act to affect synapses, are still not well understood. In this study, we use the Drosophila neuromuscular junction to study the in vivo function of Liquid facets (Lqf), a homolog of mammalian epsin 1. Our data show that Lqf plays a novel role in synapse development and function. Contrary to prior models, Lqf is not required for clathrin-mediated endocytosis of synaptic vesicles. Lqf is required to maintain bouton size and shape and to sustain synapse growth by acting as a specific substrate of the deubiquitinating enzyme Fat facets. However, Lqf is not a substrate of the Highwire (Hiw) E3 ubiquitin ligase; neither is it required for synapse overgrowth in hiw mutants. Interestingly, Lqf converges on the Hiw pathway by negatively regulating transmitter release in the hiw mutant. These observations demonstrate that Lqf plays distinct roles in two ubiquitin pathways to regulate structural and functional plasticity of the synapse. 相似文献
3.
Preethi Ramachandran Romina Barria James Ashley Vivian Budnik 《Developmental neurobiology》2009,69(9):583-602
Actin remodeling has emerged as a critical process during synapse development and plasticity. Thus, understanding the regulatory mechanisms controlling actin organization at synapses is exceedingly important. Here, we used the highly plastic Drosophila neuromuscular junction (NMJ) to understand mechanisms of actin remodeling at postsynaptic sites. Previous studies have suggested that the actin‐binding proteins Spectrin and Coracle play a critical role in NMJ development and the anchoring of glutamate receptors most likely through actin regulation. Here, we show that an additional determinant of actin organization at the postsynaptic region is the PDZ protein Baz/Par‐3. Decreasing Baz levels in postsynaptic muscles has dramatic consequences for the size of F‐actin and spectrin domains at the postsynaptic region. In turn, proper localization of Baz at this site depends on both phosphorylation and dephosphorylation events. Baz phosphorylation by its binding partner, atypical protein kinase C (aPKC), is required for normal Baz targeting to the postsynaptic region. However, the retention of Baz at this site depends on its dephosphorylation mediated by the lipid and protein phosphatase PTEN. Misregulation of the phosphorylation state of Baz by genetic alterations in PTEN or aPKC activity has detrimental consequences for postsynaptic F‐actin and spectrin localization, synaptic growth, and receptor localization. Our results provide a novel mechanism of postsynaptic actin regulation through Baz, governed by the antagonistic actions of aPKC and PTEN. Given the conservation of these proteins from worms to mammals, these results are likely to provide new insight into actin organization pathways. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009 相似文献
4.
Chemical synaptic transmission is the mechanism for fast, excitation‐coupled information transfer between neurons. Previous work in larval Drosophila has shown that transmission at synaptic boutons is protected by heat shock exposure from subsequent thermal stress through pre‐ and postsynaptic modifications. This protective effect has been, at least partially, ascribed to an up‐regulation in the inducible heat shock protein, hsp70. Effects of hsp70 are correlated with changes to intracellular calcium handling, and the dynamics of intracellular calcium regulate synaptic transmission. Consistent with such a relationship, synaptic plasticity increases at locust neuromuscular junctions following heat shock, suggesting an effect of heat shock on residual presynaptic calcium. Intracellular recording from single abdominal muscle fibers of Drosophila larvae showed that prior heat shock imparts thermoprotection by increasing the upper temperature limit for synaptic transmission. Heat shock exposure enhances short‐term synaptic plasticity and increases its thermosensitivity. Increasing extracellular calcium levels eliminates the physiological differences between control and heat shock preparations; excess calcium itself induces thermoprotection at elevated concentrations. These data support the hypothesis that stress‐induced neuroprotection at the nerve terminal acts, at least partially, through an alteration to the physiological effects of residual presynaptic calcium. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 360–371, 2003 相似文献
5.
Distinct roles of Drosophila cacophony and Dmca1D Ca2+ channels in synaptic homeostasis: Genetic interactions with slowpoke Ca2+‐activated BK channels in presynaptic excitability and postsynaptic response
下载免费PDF全文
![点击此处可从《Developmental neurobiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Chun‐Fang Wu 《Developmental neurobiology》2014,74(1):1-15
Ca2+ influx through voltage‐activated Ca2+ channels and its feedback regulation by Ca2+‐activated K+ (BK) channels is critical in Ca2+‐dependent cellular processes, including synaptic transmission, growth and homeostasis. Here we report differential roles of cacophony (CaV2) and Dmca1D (CaV1) Ca2+ channels in synaptic transmission and in synaptic homeostatic regulations induced by slowpoke (slo) BK channel mutations. At Drosophila larval neuromuscular junctions (NMJs), a well‐established homeostatic mechanism of transmitter release enhancement is triggered by experimentally suppressing postsynaptic receptor response. In contrast, a distinct homeostatic adjustment is induced by slo mutations. To compensate for the loss of BK channel control presynaptic Sh K+ current is upregulated to suppress transmitter release, coupled with a reduction in quantal size. We demonstrate contrasting effects of cac and Dmca1D channels in decreasing transmitter release and muscle excitability, respectively, consistent with their predominant pre‐ vs. postsynaptic localization. Antibody staining indicated reduced postsynaptic GluRII receptor subunit density and altered ratio of GluRII A and B subunits in slo NMJs, leading to quantal size reduction. Such slo‐triggered modifications were suppressed in cac;;slo larvae, correlated with a quantal size reversion to normal in double mutants, indicating a role of cac Ca2+ channels in slo‐triggered homeostatic processes. In Dmca1D;slo double mutants, the quantal size and quantal content were not drastically different from those of slo, although Dmca1D suppressed the slo‐induced satellite bouton overgrowth. Taken together, cac and Dmca1D Ca2+ channels differentially contribute to functional and structural aspects of slo‐induced synaptic modifications. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 1–15, 2014 相似文献
6.
A laboratory population derived from a single wild inseminated female has a lethal so closely linked to the major esterase locus that in 3 years of observations no crossover products have been detected. Linkage with a chromosome inversion was excluded by cytological analysis. The heterozygotes are superior to the homozygotes in egg-adult viability, egg-laying rate, and longevity. Electrophoretic analysis of larvae, pupae, and 2-h-old adults shows that the specific phase for the lethal effect in homozygotes is the pupal stage. 相似文献
7.
Rijan Bajracharya 《Fly》2018,12(2):95-104
Physical exercise can improve gait, balance, tremor, flexibility, grip strength and motor coordination in Parkinson’s disease (PD) patients. Several lines of evidence have also shown the therapeutic potential of dietary management and supplementation in halting the progression of PD. However, there is a lack of research on the combined effects of physical activity and nutrition in the progression of PD. We test the effects exercise and dietary modification in a Drosophila model of PD. In this study, we fed Drosophila parkin mutants high protein and high carbohydrate diets without and with stearic acid (4 treatments in total). In parallel, we subjected mutants to a regimen of exercise using a purpose-built ‘Power tower’ exercise machine. We then measured climbing ability, aconitase activity, and basal mitochondrial ROS levels. We observed that exercising parkin mutants fed the high protein diet improved their climbing ability and increased aconitase activity. There was an additional improvement in climbing and aconitase activity in exercised parkin mutants fed the high protein diet supplemented with stearic acid. No benefits of exercise were seen in parkin mutants fed the high carbohydrate diet. Combined, these results suggest that dietary management along with physical activty has potential to improve mitochondrial biogenesis and delay the progression of PD in Drosophila parkin mutants. 相似文献
8.
9.
We used Drosophila melanogaster larvae with different alleles at the foraging (for) locus in a variety of behavioral tests to evaluate normal muscle usage of rover and sitter phenotypes. The results show that sitter and lethal sitter alleles of for do not affect larval behavior through a mutation which affects larval muscle usage. In general the behavior of rovers and sitters differed on food but not on non-nutritive substrates. Rovers and sitters moved equally well on non-nutritive substrates, and measures such as the time to roll over and length of forward stride showed no significant strain differences. Larvae with different alleles at for did not differ in body length. Rovers took more strides, not longer ones, than sitters while on foraging substrates. We conclude that differences in larval locomotion during foraging found in larvae with different alleles at for can not be explained on the basis of muscle usage alone. It is more likely that for affects larval ability to perceive or respond to the foraging environment. 相似文献
10.
During the development of neural networks, what sets synaptogenic interactions apart from nonsynaptogenic interactions is not well understood at the subcellular level. Using a combination of intracellular dye injection and electron microscopy, we show that a specific motoneuron (RP3) and its synaptic partners (muscles 6 and 7), both often bearing microprocesses, develop intimate membrane contact sites characterized by junctional structures, prior to their initiating synaptogenesis in Drosophila embryos. Other motoneuron growth cones that extend alongside the RP3 growth cone to innervate surrounding muscles do not form such contacts with muscles 6 and 7. We also examined how specific target recognition molecules affect the development of these ultrastructural associations between synaptic partner cells. When Fasciclin III (Fas3), a “positive” target recognition molecule for RP3, is ectopically expressed in neighboring muscles, the RP3 growth cone ectopically develops membrane contact sites with Fas3‐misexpressing muscles with which it would not normally associate. In contrast, when Toll, a “negative” target recognition molecule normally expressed by a subset of muscles that surrounds muscles 6 and 7, is misexpressed on muscles 6 and 7, the RP3 growth cone fails to exhibit its normal close contact with these muscles. We propose that the formation of close membrane associations and junctional structures can be regulated under the influence of synaptic target recognition molecules and signifies the beginning of subcellular events during synaptic target recognition. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 448–459, 2000 相似文献
11.
Helen M. Belalcazar Emily L. Hendricks Sumaira Zamurrad Faith L.W. Liebl Julie Secombe 《Cell reports》2021,34(7):108753
- Download : Download high-res image (148KB)
- Download : Download full-size image
12.
A. S. Robinson C. van Heemert 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1981,59(1):23-24
Summary By incorporating ethanol (4% v/v) into the larval rearing medium of a specially constructed Drosophila melanogaster strain it was possible to produce only male adults; the female larvae died.In this strain, the male determining chromosome was linked with a positive Alcohol dehydrogenase (ADH) allele by a translocation. The females were homozygous for the null allele and hence sensitive to ethanol.This genetic sexing method is discussed in relation to its use in the genetic control of insects. 相似文献
13.
Rawson JM Kreko T Davison H Mahoney R Bokov A Chang L Gelfond J Macleod GT Eaton BA 《Aging cell》2012,11(3):418-427
Synaptic dysfunction is considered the primary substrate for the functional declines observed within the nervous system during age-related neurodegenerative disease. Dietary restriction (DR), which extends lifespan in numerous species, has been shown to have beneficial effects on many neurodegenerative disease models. Existing data sets suggest that the effects of DR during disease include the amelioration of synaptic dysfunction but evidence of the beneficial effects of diet on the synapse is lacking. Dynactin mutant flies have significant increases in mortality rates and exhibit progressive loss of motor function. Using a novel fly motor disease model, we demonstrate that mutant flies raised on a low calorie diet have enhanced motor function and improved survival compared to flies on a high calorie diet. Neurodegeneration in this model is characterized by an early impairment of neurotransmission that precedes the deterioration of neuromuscular junction (NMJ) morphology. In mutant flies, low calorie diet increases neurotransmission, but has little effect on morphology, supporting the hypothesis that enhanced neurotransmission contributes to the effects of diet on motor function. Importantly, the effects of diet on the synapse are not because of the reduction of mutant pathologies, but by the increased release of synaptic vesicles during activity. The generality of this effect is demonstrated by the observation that diet can also increase synaptic vesicle release at wild-type NMJs. These studies reveal a novel presynaptic mechanism of diet that may contribute to the improved vigor observed in mutant flies raised on low calorie diet. 相似文献
14.
R. E. Denell 《Genesis (New York, N.Y. : 2000)》1982,3(2):103-113
When heterozygous, dominant mutant alleles of the Polycomb locus are associated with a variety of adult homoeotic effects. Zygotes homozygous for these alleles die as late embryos showing homoeotic transformation of head, thoracic, and abdominal segments. This study shows that embryos homozygous for Pc3 are more extreme than those homozygous for Pc1 or Pc2. Moreover, Pc1/Pc3 heterozygotes are more extensively transformed if their mothers were Pc3/ + than if they were Pc1/ +; this effect does not depend on zygotic genetic background and must be maternal in nature. Embryos homozygous for Pc3 are less extreme if they arise from Pc3/ + / + than from Pc3/ + mothers. These results strongly suggest that the Polycomb locus acts maternally as well as zygotically to affect early determinative decisions. 相似文献
15.
Electron microscopic analysis of Drosophila melanogaster (w1118) ovarian cells has shown that stressful heat treatment of flies causes the appearance of electron-dense granules and
large lysosomes in the cytoplasm of ovarian cells. These changes are not due to the presence of the endosymbiotic bacteria
Wolbachia, as these changes were observed in both infected and uninfected flies. Essential envelope disturbances and other structural
alterations have been revealed in the bacteria present in the ovarian cell cytoplasm of the flies. Some of the fly embryos
died after heat shock; however, the bacteria retain their typical morphology in survived embryos. Endosymbionts did not change
their localization in ovarian cells and in early fly embryos; they closely interacted with mitochondria and endoplasmic reticulum
after the heat-shock treatment of flies. The performed study has shown that the high temperature affects both the host and
the endosymbiont, but does not change the character of their structural interaction.
Original Russian Text M.V. Zhukova, D.A. Voronin, E.V. Kiseleva, 2008, published in Tsitologiya, vol. 50, No. 5, 2008. 相似文献
16.
本文采用D.T.Suzuki的方法,研究了黑果蝇Drosophila virilis Sturt dlts品系的温度敏感时期和致死时期的相互关系.选择了31℃为限制温度,25℃为许可温度.对于成虫盘缺损的研究用了12个小时为一个脉冲或24个小时为一个脉冲的热处理,用扫描电镜技术辅助对成虫形态缺损的研究.对于成虫盘缺失和重复的关系主要在48小时为一个脉冲的热处理盘中进行,对dlts基因的表达采用了遗传嵌合性的研究,其结果如下:1. 两个不连续的温度敏感时态对致死的影响是在第1龄幼虫、第2龄幼虫、第3龄幼虫和进入蛹期后的10个小时.温度敏感时态和致死时态并不一致,而是先于致死时态几个小时.2. 温度敏感时态对成虫形态的影响是:触角的重复和复眼的缺失发生在第2龄和第3龄幼虫期.足关节融合及跗节和腿节的缩短发生在第3龄幼虫期,翅脉硬化主要发生在第3龄幼虫期即将结束进入前蛹期的这段时间.第3龄幼虫期是成虫盘发生缺陷比较集中的时期,可以明显见到足、复眼、翅和刚毛的缺陷,同源异型突变体也在这个时期发生.同源突变体的变化主要是足、触角片段及刚毛和触角片段的相互转移.3. 每一个成虫盘缺陷部有自己明显的特征,根据它们成虫盘的形态缺陷和热处理的时间性,所有的成虫盘缺陷变化都可以分为这样三类:缺失,重复,缺失和重复并存.4. 遗传镶嵌测试表明:dlts基因是自主表达的,且具有一定的时间、环境和组织的特殊性. 相似文献
17.
本文采用D.T.Suzuki的方法,研究了黑果蝇Drosophila virilis Sturt dlts品系的温度敏感时期和致死时期的相互关系。选择了31℃为限制温度,25℃为许可温度。对于成虫盘缺损的研究用了12个小时为一个脉冲或24个小时为一个脉冲的热处理,用扫描电镜技术辅助对成虫形态缺损的研究。对于成虫盘缺失和重复的关系主要在48小时为一个脉冲的热处理盘中进行,对dlts基因的表达采用了遗传嵌合性的研究,其结果如下:1两个不连续的温度敏感时态对致死的影响是在第1龄幼虫、第2龄幼虫、第3龄幼虫和进入蛹期后的10个小时。温度敏感时态和致死时态并不一致,而是先于致死时态几个小时。2温度敏感时态对成虫形态的影响是:触角的重复和复眼的缺失发生在第2龄和第3龄幼虫期。足关节融合及跗节和腿节的缩短发生在第3龄幼虫期,翅脉硬化主要发生在第3龄幼虫期即将结束进入前蛹期的这段时间。第3龄幼虫期是成虫盘发生缺陷比较集中的时期,可以明显见到足、复眼、翅和刚毛的缺陷,同源异型突变体也在这个时期发生。同源突变体的变化主要是足、触角片段及刚毛和触角片段的相互转移。3每一个成虫盘缺陷部有自己明显的特征,根据它们成虫盘的形态缺陷和热处理的时间性,所有的成虫盘缺陷变化都可以分为这样三类:缺失,重复,缺失和重复并存。4遗传镶嵌测试表明:dlts基因是自主表达的,且具有一定的时间、环境和组织的特殊性。 相似文献
18.
Knight D Iliadi K Charlton MP Atwood HL Boulianne GL 《Developmental neurobiology》2007,67(12):1598-1613
Alzheimer's disease is a neurodegenerative disorder characterized by progressive memory and cognitive decline that is associated with changes in synaptic plasticity and neuronal cell loss. Recent evidence suggests that some of these defects may be due to a loss of normal presenilin activity. Here, we have examined the effect of loss of Drosophila presenilin (psn) function on synaptic plasticity and learning. Basal transmitter release was elevated in psn mutants while both paired pulse synaptic plasticity and post-tetanic potentiation were impaired. These defects in synaptic strength and plasticity were not due to developmental defects in NMJ morphology. We also found that psn null terminals take up significantly less FM 4-64 than control terminals when loaded with high frequency stimulation, suggesting a defect in synaptic vesicle availability or mobilization. To determine whether these reductions in synaptic plasticity had any impact on learning, we tested the larvae for defects in associative learning. Using both olfactory and visual learning assays, we found that associative learning is impaired in psn mutants compared with controls. Both the learning and synaptic defects could be rescued by expression of a full length psn transgene suggesting the defects are specifically due to a loss of psn function. Taken together, these results provide the first evidence of learning and synaptic defects in a Drosophila psn mutant and strongly suggest a presynaptic role for presenilin in normal neuronal function. 相似文献
19.
20.
A radiochemical method is applied to the study of neurotransmitter metabolism in Drosophila. The larval CNS is a favorable system for analyzing acetylcholine (ACh) metabolism, since the pool of [3H]ACh rapidly reaches a steady state with a high ratio of intracellular [3H]ACh to [3H]choline. A temperature-sensitive paralytic mutant, shibirets, shows reduced [3H]ACh accumulation at the restrictive temperature. This reduction is not the result of decreased synthesis of [3H]ACh, but rather an abnormally rapid rate of release, which is not prevented by blocking tetrodotoxin-sensitive nerve activity. 相似文献