首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulated trafficking of neurotransmitter receptors in excitable cells may play an important role in synaptic plasticity. In addition, agonist-induced endocytosis of nicotinic acetylcholine receptors (nAChRs) in particular might be involved in nicotine tolerance and addiction. The existing evidence concerning regulated internalization of cell-surface nAChRs is indirect and equivocal, however. In the present study, radioligand binding and fluorescence microscopy were used to show that agonists cause substantial endocytosis of nAChRs on cultured myotubes. Exposure to carbachol or nicotine caused a decrease in the intensity of fluorescent labeling of clusters of cell-surface nAChRs that was blocked by low temperature. Overall, myotubes exposed to carbachol or nicotine bound 50-70% less [(125)I]-alpha-bungarotoxin on the cell surface than untreated cells. The effect of carbachol was significant within 5 min, increased progressively for at least 4 h, and had a sensitivity of 100 nM or less. Exposure to carbachol caused the appearance or dramatic expansion of an intracellular pool of nAChRs, which were localized to discrete, largely perinuclear structures. A pulse-chase labeling protocol allowed the selective labeling and localization of nAChRs that had been internalized from the cell surface. In untreated cells, very little internalization of nAChRs occurred over a period of 3 h, indicating that constitutive endocytosis of receptors over this period was minimal. Exposure to carbachol, however, caused a dramatic increase in the endocytosis of nAChRs. These results provide direct evidence that agonists, including the tobacco alkaloid nicotine, can cause substantial endocytosis of cell-surface nAChRs.  相似文献   

2.
Endocytosis and recycling of muscarinic receptors   总被引:3,自引:0,他引:3  
Agonist stimulation causes the endocytosis of many G protein-coupled receptors, including muscarinic acetylcholine receptors. In this study we have investigated the agonist-triggered trafficking of the M3 muscarinic receptor expressed in SH-SY5Y human neuroblastoma cells. We have compared the ability of a series of agonists to generate the second messenger Ins(1,4,5)P3 with their ability to stimulate receptor endocytosis. We show that there is a good correlation between the intrinsic activity of the agonists and their ability to increase the rate constant for receptor endocytosis. Furthermore, on the basis of our results, we predict that even very weak partial agonists should under some circumstances be able to cause substantial receptor internalization. Receptor endocytosis occurs too slowly to account for the rapid desensitization of the Ca2+ response to carbachol. Instead, receptor endocytosis and recycling appear to play an important role in resensitization. After an initial agonist challenge, the response to carbachol is fully recovered when only about half of the receptors have been recycled to the cell surface, suggesting that there is a receptor reserve of about 50%. Removal of this reserve by receptor alkylation significantly reduces the extent of resensitization. Resensitization is also reduced by inhibitors of either endocytosis alone (concanavalin A) or of endocytosis and recycling (nigericin). Finally, the protein phosphatase inhibitor calyculin A also reduces resensitization, possibly by blocking the dephosphorylation of the receptors in an endosomal compartment.  相似文献   

3.
NG108-15 cells express predominantly the M4 subtype of the muscarinic receptor for acetylcholine. Stimulation of these receptors by the agonist carbachol causes an inhibition of cellular adenylyl cyclase and a consequent fall in the intracellular cyclic AMP concentration. Pretreatment of the cells with carbachol caused both internalization and desensitization of the M4 receptor. Overexpression of G protein-coupled receptor kinase (GRK) 2 caused an increase in the rate constant for receptor endocytosis (from 0.06 to 0.18 min(-1)) and a decrease in the EC50 for carbachol stimulation of internalization (from 15 to 3 microM). Overexpression of a dominant negative form of GRK2 had more modest effects, reducing the rate constant for endocytosis (from 0.11 to 0.07 min(-1)) and increasing the EC50 for carbachol stimulation of internalization (from 8 to 17 microM). Neither GRK2 nor dominant negative GRK2 overexpression had any effect on the rate constant for receptor recycling following agonist removal. The time course and extent of receptor desensitization in control cells were identical to the corresponding values for receptor internalization, and the rate and extent of desensitization were again increased by GRK2 overexpression. Exposure of the cells to hyperosmolar sucrose (0.6 M) almost completely blocked agonist-induced receptor internalization in both control and GRK2-overexpressing cells. Sucrose treatment also blocked agonist-induced desensitization. We conclude that the internalization and desensitization of the M4 muscarinic receptor in NG108-15 cells can be modulated in response to changes in GRK2 activity and also that internalization plays a key role in desensitization.  相似文献   

4.
The primary target for nicotine in the brain is the neuronal nicotinic acetylcholine receptor (nAChR). It has been well documented that nAChRs respond to chronic nicotine exposure by up-regulation of receptor numbers, which may underlie some aspects of nicotine addiction. In order to investigate the mechanism of nicotine-induced nAChR up-regulation, we have developed a cell culture system to assess membrane trafficking and nicotine-induced up-regulation of surface-expressed alpha(4)beta(2) nAChRs. Previous reports have implicated stabilization of the nAChRs at the plasma membrane as the potential mechanism of up-regulation. We have found that whereas nicotine exposure results in up-regulation of surface receptors in our system, it does not alter surface receptor internalization from the plasma membrane, postendocytic trafficking, or lysosomal degradation. Instead, we find that transport of nAChRs through the secretory pathway to the plasma membrane is required for nicotine-induced up-regulation of surface receptors. Therefore, nicotine appears to regulate surface receptor levels at a step prior to initial insertion in the plasma membrane rather than by altering their endocytic trafficking or degradation rates as had been previously suggested.  相似文献   

5.
In this study, we evaluate the effects of (3β)‐3‐[2‐(diethylamino)ethoxy]androst‐5‐en‐17‐one dihydrochloride (U18666A), a cholesterol synthesis/transporter inhibitor, on selected human neuronal nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the SH‐EP1 cell line using whole‐cell patch‐clamp recordings. The results indicate that with 2‐min pretreatment, U18666A inhibited different nAChR subtypes with a rank‐order of potency (IC50 of whole‐cell peak current): α4β2 (8.0 ± 3.0 nM) > α3β2 (1.7 ± 0.4 μM) > α4β4 (26 ± 7.2 μM) > α7 (> 100 μM), suggesting this compound is more selective to α4β2‐nAChRs. Thus, the pharmacological profiles and mechanisms of U18666A acting on α4β2‐nAChRs were investigated in detail. U18666A suppresses both peak and steady state components of whole‐cell currents mediated by human α4β2‐nAChRs in response to nicotine. In nicotine‐induced concentration–response curves, U18666A reduces nicotine‐induced current at maximally effective agonist concentrations without influencing nicotine’s EC50 value, suggesting a non‐competitive inhibition. U18666A‐induced inhibition of nAChR function is concentration‐, voltage‐, and use‐dependent, suggesting an open channel block. Taken into consideration of ~10 000‐fold enhancement of the potency of U18666A after 2‐min pre‐treatment, this compound also likely inhibits α4β2‐nAChRs through a close channel block. In addition, the U18666A‐induced inhibition in α4β2‐nAChRs is not mediated by either increased receptor endocytosis or altered cell cholesterol. These data indicate that U18666A is a potent antagonist of α4β2‐nAChRs and may be useful as a tool in the functional characterization and pharmacological profiling of nAChRs, as well as a potential candidate for smoking cessation.  相似文献   

6.
Nicotinic acetylcholine receptors (nAChRs) are homo‐ or heteropentameric ligand‐gated ion channels mediating excitatory neurotransmission and muscle activation. Regulation of nAChR subunit assembly and transfer of correctly assembled pentamers to the cell surface is only partially understood. Here, we characterize an ER transmembrane (TM) protein complex that influences nAChR cell‐surface expression and functional properties in Caenorhabditis elegans muscle. Loss of either type I TM protein, NRA‐2 or NRA‐4 (n icotinic r eceptor a ssociated), affects two different types of muscle nAChRs and causes in vivo resistance to cholinergic agonists. Sensitivity to subtype‐specific agonists of these nAChRs is altered differently, as demonstrated by whole‐cell voltage‐clamp of dissected adult muscle, when applying exogenous agonists or after photo‐evoked, channelrhodopsin‐2 (ChR2) mediated acetylcholine (ACh) release, as well as in single‐channel recordings in cultured embryonic muscle. These data suggest that nAChRs desensitize faster in nra‐2 mutants. Cell‐surface expression of different subunits of the ‘levamisole‐sensitive’ nAChR (L‐AChR) is differentially affected in the absence of NRA‐2 or NRA‐4, suggesting that they control nAChR subunit composition or allow only certain receptor assemblies to leave the ER.  相似文献   

7.
The internalization of proteins plays a key role in cell development, cell signaling and immunity. We have previously developed a specific hybridization internalization probe (SHIP) to quantitate the internalization of proteins and particles into cells. Herein, we extend the utility of SHIP to examine both the endocytosis and recycling of surface receptors using flow cytometry. SHIP was used to monitor endocytosis of membrane‐bound transferrin receptor (TFR) and its soluble ligand transferrin (TF). SHIP enabled measurements of the proportion of surface molecules internalized, the internalization kinetics and the proportion and rate of internalized molecules that recycle to the cell surface with time. Using this method, we have demonstrated the internalization and recycling of holo‐TF and an antibody against the TFR behave differently. This assay therefore highlights the implications of receptor internalization and recycling, where the internalization of the receptor‐antibody complex behaves differently to the receptor‐ligand complex. In addition, we observe distinct internalization patterns for these molecules expressed by different subpopulations of primary cells. SHIP provides a convenient and high throughput technique for analysis of trafficking parameters for both cell surface receptors and their ligands.   相似文献   

8.
The autonomic nervous system is known to mediate mast cell activation. We investigated expression of nicotinic acetylcholine receptors (nAChRs) in mucosal-type mast cells and their contribution to the regulation of mast cell activation. Expression of mRNA of nAChR α4, α7, and β2 subunits were detected in specially differentiated mucosal-type murine bone marrow-derived mast cells (mBMMCs). Pretreatment with non-specific nAChRs agonists, acetylcholine, nicotine and epibatidine and a specific α7 subunit agonist GTS-21 significantly inhibited antigen-induced degranulation of mBMMCs in a dose-dependent manner and GTS-21-induced inhibition was significantly blocked by α7 subunit antagonist, α-bungarotoxin. Furthermore, confocal microscopy also demonstrated surface binding of α-bungarotoxin on mBMMCs. Our findings indicate that mucosal mast cell activation may be negatively regulated mainly through nAChR α7 subunit, suggesting that nAChRs are involved in neuronal-mucosal mast cell interactions.  相似文献   

9.
CD4, a member of the immunoglobulin superfamily, is not only expressed in T4 helper lymphocytes but also in myeloid cells. Receptor-mediated endocytosis plays a crucial role in the regulation of surface expression of adhesion molecules such as CD4. In T lymphocytes p56lck, a CD4-associated tyrosine kinase, prevents CD4 internalization, but in myeloid cells p56lck is not expressed and CD4 is constitutively internalized. In this study, we have investigated the role of cyclic AMP (cAMP) in the regulation of CD4 endocytosis in the myeloid cell line HL-60. Elevations of cellular cAMP were elicited by 1) cholera toxin, 2) pertussis toxin, 3) forskolin and IBMX, 4) NaF, or 5) the physiological receptor agonist prostaglandin E1. All five interventions led to an inhibition of CD4 internalization. Increased cAMP levels did not inhibit endocytosis per se, because internalization of insulin receptors and transferrin receptors and fluid phase endocytosis were either unchanged or slightly enhanced. The mechanism of cAMP inhibition was further analyzed at the ultrastructural level. CD4 internalization, followed either by quantitative electron microscopy autoradiography or by immunogold labeling, showed a rapid and temperature-dependent association of CD4 with clathrin-coated pits in control cells. This association was markedly inhibited in cells with elevated cAMP levels. Thus these findings suggest a second-messenger regulation of CD4 internalization through an inhibition of CD4 association with clathrin-coated pits in p56lck-negative cells.  相似文献   

10.
To characterize the mechanism of internalization of beta-adrenergic catecholamine receptors on human epidermoid A431 carcinoma cells, their distribution was analyzed by immunocytochemistry using the monoclonal anti-receptor antibody BRK2. In preconfluent cultures, the receptors appeared to be randomly distributed on the cell surface. Exposure to the agonist isoproterenol induced an overall decrease in the number of cell surface receptors as determined by binding experiments and visualized by immunofluorescence. When cells were incubated at 4 degrees C with BRK2 and anti-mouse IgG-gold and then transferred at 37 degrees C, non-coated invaginations and vesicles were labeled. The addition of isoproterenol resulted in an increased rate of internalization of the receptor-BRK2-anti-IgG-gold complex. When incubation with the two antibody reagents was prolonged (with or without isoproterenol), non-coated vesicles fused in the endosomal compartment, and receptors were transferred to multivesicular bodies and lysosomes. At no stage in this process was there any indication that clathrin-coated pits or vesicles participated. Furthermore, we found that an intracellular potassium depletion treatment known to inhibit endocytosis, did not affect the normal pattern of desensitization of beta-adrenergic receptors.  相似文献   

11.
Inhibition of CCK or carbachol-stimulated amylase release by nicotine   总被引:1,自引:0,他引:1  
This study was undertaken to investigate the mechanisms of action of nicotine on receptor mediated enzyme secretion in isolated rat pancreatic acini. Acinar cells were isolated from untreated and nicotine treated rats by collagenase digestion and differential centrifugation. Cells from the untreated animals were incubated with either varying concentrations of nicotine (range 10 microM to 30 mM) or with a fixed dose of 10 mM nicotine with varying concentrations of carbachol(10nM to 100 microM). Cells from the nicotine treated animals(16 weeks in drinking water) were incubated with either a fixed dose of CCK-8(10(-10) M) or carbachol(10(-5) M). All incubations were conducted at 37 C for 30 min. Amylase released in the media was measured by spectrophotometry. In pancreatic acinar cells isolated from control rats, amylase release stimulated by carbachol was inhibited by nicotine. Acinar cells isolated from rats treated with nicotine at nicotine concentrations of 1.23 mM also showed significant inhibition of amylase release in response to CCK-8 and carbachol compared to their identical controls. Nicotine induced inhibition curves of amylase release stimulated by carbachol were non-parallel suggesting that the effect of nicotine on acinar cells is regulated by mechanisms other than carbachol receptors. Nicotine may have a direct inhibitory effect on the intracellular mechanisms of pancreatic enzyme secretion. We conclude that the mechanism by which nicotine inhibits pancreatic enzyme secretion is complex.  相似文献   

12.
Receptor internalization is recognized as an important mechanism for rapidly regulating cell surface numbers of receptors. However, there are conflicting results on the existence of rapid endocytosis of gamma-aminobutyric acid, type B (GABAB) receptors. Therefore, we analyzed internalization of GABAB receptors expressed in HEK 293 cells qualitatively and quantitatively using immunocytochemical, cell surface enzyme-linked immunosorbent assay, and biotinylation methods. The data indicate the existence of rapid constitutive receptor internalization, with the first endocytosed receptors being observed in proximity of the plasma membrane after 10 min. After 120 min, a loss of about 40-50% of cell surface receptors was detected. Stimulation of GABAB receptors with GABA or baclofen did not enhance endocytosis of receptors, indicating the lack of agonist-induced internalization. The data suggest that GABAB receptors were endocytosed via the classical dynamin- and clathrin-dependent pathway and accumulated in an endosomal sorting compartment before being targeted to lysosomes for degradation. No evidence for recycling of receptors back to the cell surface was found. In conclusion, the results indicate the presence of constitutive internalization of GABAB receptors via clathrin-coated pits, which resulted in lysosomal degradation of the receptors.  相似文献   

13.
In previous experiments the surface expression of epidermal growth factor (EGF) receptors in freshly isolated rat hepatocytes varied temperature- and time-dependently and was depleted by monensin and cycloheximide in a way suggesting that a subpopulation of these receptors are subject to constitutive cycling (Gladhaug and Christoffersen; 1988). We here report the finding that pretreatment of the hepatocytes with amiloride exerts marked effects on cellular EGF receptor movements. After 2 h incubation with 1 mM amiloride, the receptor level was approximately 270,000 sites/cell surface vs. 140,000 in the untreated cell, with no change in receptor affinity. Amiloride thus stabilized the surface EGF receptor pool at an elevated level. In cells pretreated with amiloride for 60 min, the relative endocytosis decreased from about 2.6 EGF molecules internalized per receptor during 15 min endocytosis in untreated cells to about 1.5 molecules/receptor in amiloride-treated cells. These results suggest that amiloride causes an accumulation of EGF receptors at the hepatocyte surface due to inhibition of constitutive receptor internalization. In addition, it was found that in amiloride-treated hepatocytes the phorbol ester TPA strongly inhibited high-affinity EGF binding without affecting the total surface receptor number. In control cells, TPA did not consistently affect binding. Pretreatment with amiloride prevented surface EGF receptor depletion induced by cycloheximide and puromycin, but it did not significantly inhibit surface receptor depletion caused by monensin. Although the underlying mechanism of the amiloride effect on intracellular receptor trafficking is not clear, the results provide further evidence for a continuous, ligand-independent EGF receptor cycling pathway in hepatocytes.  相似文献   

14.
The mechanisms of carbachol-induced muscarinic acetylcholine receptor (mAChR) down-regulation, and recovery following carbachol withdrawal, were studied in the neuroblastoma x glioma hybrid NG108-15 cell line by specific ligand binding assays. N-[3H]Methylscopolamine ([3H]NMS) and [3H]quinuclidinyl benzilate ([3H]QNB) were used as the ligands for the cell surface and total cellular mAChRs, respectively. Exposure of cells to 1 mM carbachol for 16 h decreased the specific binding of [3H]NMS and [3H]QNB by approximately 80%. Bacitracin (1-4 mg/ml) and methylamine (1-15 mM), inhibitors of transglutaminase and of endocytosis, prevented agonist-induced loss of surface mAChRs. Pretreatment of cells with the antimicrotubular agents nocodazole (0.1-10 microM) and colchicine (1-10 microM) prevented carbachol-induced loss of [3H]QNB binding, but not that of [3H]NMS binding. These results indicate that agonist-induced mAChR down-regulation occurs by endocytosis, followed by microtubular transport of receptors to their intracellular degradation sites. When carbachol was withdrawn from the culture medium following treatment of cells for 16 h, receptors recovered and were incorporated to the surface membrane. This recovery process was antagonized by monovalent ionophores monensin (0.1 microM) and nigericin (40 nM), which interfere with Golgi complex function. Receptor recovery was also prevented by the antimicrotubular agent nocodazole. Thus, recovery of receptors appears to be mediated via Golgi complex and microtubular transport to the surface membrane.  相似文献   

15.
Smoking cessation is an important aim in public health worldwide as tobacco smoking causes many preventable deaths. Addiction to tobacco smoking results from the binding of nicotine to nicotinic acetylcholine receptors (nAChRs) in the brain, in particular the α4β2 receptor. One way to aid smoking cessation is by the use of nicotine replacement therapies or partial nAChR agonists like cytisine or varenicline. Here we present the co-crystal structures of cytisine and varenicline in complex with Aplysia californica acetylcholine-binding protein and use these as models to investigate binding of these ligands binding to nAChRs. This analysis of the binding properties of these two partial agonists provides insight into differences with nicotine binding to nAChRs. A mutational analysis reveals that the residues conveying subtype selectivity in nAChRs reside on the binding site complementary face and include features extending beyond the first shell of contacting residues.  相似文献   

16.
The ability of muscarinic receptors, present in either the cell surface or sequestered compartments of intact human SK-N-SH neuroblastoma cells, to stimulate phosphoinositide hydrolysis has been examined. When cells were first exposed to carbachol for 1 h at 37 degrees C, approximately 50% of the cell surface receptors became sequestered, and this was accompanied by a comparable reduction in the subsequent ability of muscarinic agonists to stimulate phosphoinositide turnover, as monitored by the release of labeled inositol phosphates at 10 degrees C. At this temperature, muscarinic receptor cycling between the two cell compartments is prevented. Upon warming the carbachol-pretreated cells to 37 degrees C, receptor cycling is reinitiated and stimulated phosphoinositide turnover is fully restored within 5-8 min. When measured at 10 degrees C, the reduction of stimulated phosphoinositide turnover observed following carbachol pretreatment was similar in magnitude for both hydrophilic (carbachol, oxotremorine-M) and lipophilic (arecoline, oxotremorine-2, and L-670,548) agonists. The loss of response for both groups of agonists could be prevented if the incubation temperature was maintained at 37 degrees C, rather than at 10 degrees C. At the latter temperature carbachol pretreatment of SK-N-SH cells reduced the maximum release of inositol phosphates elicited by either carbachol or L-670,548 but not the agonist concentrations required for half-maximal stimulation. Radioligand binding studies, carried out at 10 degrees C, indicate that following receptor sequestration, significantly higher concentrations of carbachol were required to occupy the available muscarinic receptor sites. In contrast the lipophilic full agonist L-670,548 recognized receptors present in control and carbachol-pretreated cells with comparable affinities. Analysis of the inositol lipids present after carbachol pretreatment indicate that only a minimal depletion of the substrates necessary for phospholipase C activation had occurred. The results indicate that the agonist-induced sequestration of muscarinic receptors from the cell surface results in a loss of stimulated phosphoinositide hydrolysis when measured under conditions in which the return of the sequestered receptors to the cell surface is prevented. Thus, only those receptors present at the cell surface are linked to phospholipase C activation.  相似文献   

17.
While it has been well demonstrated that quantum dots (QDs) play an important role inbiological labeling both in vitro and in vivo,there is no report describing the cellular nanostructure basis ofreceptor-mediated endocytosis.Here,nanostructure evolution responses to the endocytosis of transferrin(Tf)-conjugated QDs were characterized by atomic force microscopy (AFM).AFM-based nanostructureanalysis demonstrated that the Tf-conjugated QDs were specifically and tightly bound to the cell receptorsand the nanostructure evolution is highly correlated with the cell membrane receptor-mediated transduction.Consistently,confocal microscopic and flow cytometry results have demonstrated the specificity anddynamic property of Tf-QD binding and internalization.We found that the internalization of Tf-QD is linearlyrelated to time.Moreover,while the nanoparticles on the cell membrane increased,the endocytosis was stillvery active,suggesting that QD nanoparticles did not interfere sterically with the binding and function ofreceptors.Therefore,ligand-conjugated QDs are potentially useful in biological labeling of cells at a nanometerscale.  相似文献   

18.
Binding of a growth factor (GF) to its specific receptor on the cell surface causes the initiation of a signal transduction cascade which eventually results in mitosis. GF:receptor complexes are removed from the cell surface via receptor-mediated endocytosis, a process which involves clathrin-coated pits. After internalization into the endosomal compartment, a significant pool of GFs and GF receptors escape recycling to the cell surface and are sorted to the degradation pathway. The ligandinduced internalization and lysosomal degradation of GF receptors result in the dramatic loss of surface receptors, a phenomenon termed receptor down-regulation. In this review, we discuss relevant biochemical, morphological and kinetic studies of the mechanism of GF endocytosis, and the possible role of this process in mitogenic signaling by growth factor receptors.  相似文献   

19.
Receptor-mediated endocytosis of specific ligands is mediated through clustering of receptor-ligand complexes in coated pits on the cell surface, followed by internalization of the complex into endocytic vesicles. We show that internalization of asialoglycoprotein by HepG2 hepatoma cells is accompanied by a rapid (t1/2 = 0.5-1 min) depletion of surface asialoglycoprotein receptors. This is followed by a rapid (t1/2 = 2-4 min) reappearance of surface receptors; most of these originate from endocytosed cell-surface receptors. The loss and reappearance of asialoglycoprotein receptors is specific, and depends on prebinding of ligand to its receptor. HepG2 cells also contain abundant receptors for both insulin and transferrin. Endocytosis of asialoglycoprotein and its receptor has no effect on the number of surface binding sites for transferrin or insulin. We conclude that binding of asialoglycoprotein to its surface receptor triggers a rapid and specific endocytosis of the receptor-ligand complex, probably due to a clustering in clathrin-coated pits or vesicles.  相似文献   

20.
N M Scherer  N M Nathanson 《Biochemistry》1990,29(36):8475-8483
Cloned muscarinic acetylcholine m1 and m2 receptors were expressed in stably transfected mouse Y1 adrenal cells and in a variant Y1 line, Kin-8, which is deficient in cAMP-dependent protein kinase activity (PKA-). m1 and m2 receptors were rapidly internalized following exposure of transfected PKA+ or PKA- cells to the muscarinic agonist carbachol. Thus, agonist-dependent internalization of m1 and m2 did not require PKA activity. A differential effect of PKA on regulation by agonist of the m2 receptor, but not the m1 receptor, was unmasked in PKA- cells. The m2 receptor was more sensitive to agonist-dependent internalization, and its rate of internalization was faster in PKA- cells than it was in PKA+ cells. Treatment of PKA+ cells with 8-(4-chlorophenylthio)-cAMP or forskolin did not result in internalization of either m1 or m2 receptors and did not alter the extent of agonist-dependent internalization of m2. These data indicate that the basal activity of PKA may modulate the agonist-dependent internalization of the m2 receptor, but not the m1 receptor. The internalization of the m1 and m2 receptors in both PKA+ and PKA- cells was accompanied by desensitization of functional responses. Exposure of PKA+ cells to 10(-7) M phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, resulted in a 30 +/- 9% decrease in the number of m1 receptors on the cell surface. However, treatment of PKA- cells expressing the m1 receptor did not result in internalization, suggesting that PKA was required for some aspect of PMA-dependent internalization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号