共查询到20条相似文献,搜索用时 15 毫秒
1.
Watkins S Geng X Li L Papworth G Robbins PD Drain P 《Traffic (Copenhagen, Denmark)》2002,3(7):461-471
We combined confocal and live-cell imaging with a novel molecular strategy aimed at revealing mechanisms underlying glucose-regulated insulin vesicle secretion. The 'Ins-C-GFP' reporter monitors secretory peptide targeting, trafficking, and exocytosis without directly tagging the mature secreted peptide. We trapped a green fluorescent protein (GFP) reporter in equimolar quantity within the secretory vesicle by fusing it within the C peptide of proinsulin which only after nascent vesicle sealing and acidification is cleaved from the mature secreted A and B chains of insulin. Ins-C-GFP expression in mouse islets without fail exhibited punctate distribution of green fluorescence by confocal microscopy. Ins-C-GFP colocalized GFP with insulin at vesicle dense cores by immuno-electron microscopy. Glucose stimulation decreased vesicle fluorescence coordinately with enhanced secretion from islets of C-GFP detected by anti-GFP Western blots, and of insulin detected by anti-insulin radioimmunoassay. An insulin secretagogue with a red fluorescent label, glibenclamide BODIPY® TR, was applied to islets expressing Ins-C-GFP. The stimulus response was imaged as a rise in red secretagogue leading to marked loss in green granules. Since neuropeptides as well as peptide hormones are processed from propeptides after sealing of secretory granules, vesicle trapping likely is widely applicable for studies on targeting, trafficking, and regulated release of secretory peptides. 相似文献
2.
The insulin-sensitive glucose transporter GLUT4 mediates the uptake of glucose into adipocytes and muscle cells. In this study we have used a novel 96-well plate fluorescence assay to study the kinetics of GLUT4 trafficking in 3T3-L1 adipocytes. We have found evidence for a graded release mechanism whereby GLUT4 is released into the plasma membrane recycling system in a nonkinetic manner as follows: the kinetics of appearance of GLUT4 at the plasma membrane is independent of the insulin concentration; a large proportion of GLUT4 molecules do not participate in plasma membrane recycling in the absence of insulin; and with increasing insulin there is an incremental increase in the total number of GLUT4 molecules participating in the recycling pathway rather than simply an increased rate of recycling. We propose a model whereby GLUT4 is stored in a compartment that is disengaged from the plasma membrane recycling system in the basal state. In response to insulin, GLUT4 is quantally released from this compartment in a pulsatile manner, leaving some sequestered from the recycling pathway even in conditions of excess insulin. Once disengaged from this location we suggest that in the continuous presence of insulin this quanta of GLUT4 continuously recycles to the plasma membrane, possibly via non-endosomal carriers that are formed at the perinuclear region. 相似文献
3.
《Current biology : CB》2022,32(21):4549-4564.e6
- Download : Download high-res image (181KB)
- Download : Download full-size image
4.
The DrosophilasNPF gene regulates growth through the ERK-insulin pathway. sNPF encodes a precursor protein that is processed and produces biologically active sNPF peptides. However, the functions of these peptides are not known. In Drosophila neuronal cells in culture and in flies in vivo, sNPF1 and sNPF2 activated the ERK-insulin pathway and regulated body growth. In addition, the sNPF precursor and the processed sNPF peptide were co-localized in the neurons of the central nervous system. These results indicate that sNPF1 and sNPF2 peptides processed from the sNPF precursor are sufficient for regulating body growth through the ERK-insulin pathway in Drosophila. 相似文献
5.
J. Klingauf 《Neurophysiology》2007,39(4-5):305-306
The use of modern techniques (in particular, novel fluorescence markers of a few molecular participants of the exo-and endocytotic
processes, including pH-sensitive agents, immuno-electron and laser-scanning microscopy) allows experimenters to visualize
different stages of recycling of synaptic vesicle proteins.
Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 350–351, July–October, 2007. 相似文献
6.
Quan Yuan Jose D. Fontenele‐Neto Lloyd D. Fricker 《Obesity (Silver Spring, Md.)》2004,12(7):1179-1188
Objective: To compare the effect of voluntary exercise on body weight, food consumption, and levels of serum proteins between wild‐type and carboxypeptidase E‐deficient (Cpefat/fat) mice. Research Methods and Procedures: Study 1 consisted of three groups of female mice: Cpefat/fat mice with continuous access to exercise wheels for 3 weeks (n = 4); wild‐type C57BKS mice with access to exercise wheels for 3 weeks (n = 4); and sedentary Cpefat/fat mice (n = 3). Activity, body weight, and food consumption were monitored for this period and a subsequent 9‐week period without exercise wheels. Study 2 consisted of four groups of male mice (n = 6 to 7 each): Cpefat/fat mice with exercise wheels, wild‐type mice with exercise wheels, and Cpefat/fat and wild‐type mice without exercise wheels. Body weight and food consumption were measured over 4 weeks. Sera were collected, and the protein profile was determined by 2‐dimensional gel electrophoresis and mass spectrometry. Results: Cpefat/fat mice were moderately hyperphagic but lost weight during the initial exercise period because of greater energy expenditure. The effect of exercise was temporary, and the mice gained weight after the second week. Several serum proteins were found to be altered by exercise: haptoglobin was decreased by exercise in Cpefat/fat mice, and several kallikreins were increased by exercise in wild‐type mice. Discussion: The access to exercise wheels provided an initial weight loss in Cpefat/fat mice, but this effect was offset by elevated food consumption. The serum proteomics results indicated that Cpefat/fat and wild‐type mice differed in their response to exercise. 相似文献
7.
8.
Secretory vesicles are localized in specific compartments within neurosecretory cells. Morphometric, cytochemical and electrophysiological techniques have allowed the definition of secretory vesicle compartments. These are different pools in which vesicles are in various states of releasability. The transit of vesicles between compartments is not random, but an event controlled and regulated by Ca2+ and the cortical F-actin network. Cortical F-actin disassembly, a Ca2+-dependent event, controls the transit of secretory vesicles from the reserve compartment to the release-ready vesicle pool. Furthermore, the recent development of new technical approaches (patch-clamp membrane capacitance, electrochemical detection of amines with carbon-fibre microelectrodes) has now permitted us to understand the kinetics of single vesicle exocytosis. 相似文献
9.
目的 槲皮素是一种广泛分布于药用植物中的黄酮类化合物,传统被认为具有神经保护作用。本研究利用位于大鼠脑干花萼状突触的突触前神经末梢进行膜片钳记录,研究槲皮素调控突触传递和可塑性的突触前机制。方法 利用全细胞膜片钳结合膜电容记录,在突触后记录微小兴奋性突触后电流(m EPSC),在突触前神经末梢记录钙內流和神经囊泡的释放、回收以及可立即释放库(RRP)的恢复动力学。并且利用纤维刺激在轴突给予5~200 Hz的刺激,诱发突触后EPSC,记录突触后短时程抑制(STD)。结果 100μmol/L槲皮素不影响突触后m EPSC的振幅、频率以及AMPA受体的动力学特征。在突触前神经末梢,槲皮素不改变钙内流或囊泡的释放,但显著抑制胞吐后网格蛋白依赖的慢速胞吞。抑制胞吞会导致突触前囊泡动员的减慢,降低RRP的补充速率,并且增强高频刺激下的短时程可塑性STD。结论 本研究为槲皮素调控中枢神经突触传递提供全新的突触前神经机制,槲皮素有助于抑制中枢神经过度兴奋,进而发挥神经保护作用。 相似文献
10.
The stoned proteins, stoned A (STNA) and stoned B (STNB), are essential for normal vesicle trafficking in Drosophila melanogaster neurons, and deletion of the stoned locus is lethal. Although there is a growing body of research aimed at defining the roles of these proteins, particularly for STNB where homologues have now been identified in all multicellular species, their functions and mechanisms of action are not yet established. The two proteins are structurally unrelated, consistent with two distinct cellular functions. The evidence suggests a critical requirement for stoned proteins in recycling/regulation or specification of a competent synaptic vesicle pool. As stoned proteins may be specific to a particular pathway of endocytosis, studies of their function are likely to be valuable in distinguishing between the different mechanisms of membrane retrieval and their respective contributions to synaptic vesicle recycling, a subject of considerable scientific debate. In this review, we examine the published literature on stoned and comment on the available data, conclusions from these analyses and how they may relate to alternative models of vesicle cycling. 相似文献
11.
Saito N Takeuchi T Kawano A Hosaka M Hou N Torii S 《Traffic (Copenhagen, Denmark)》2011,12(4):499-506
Phogrin, a receptor tyrosine phosphatase-like protein, is localized to dense-core secretory granules (SGs) in various neuroendocrine cells. A previous report showed that the N-terminal luminal domain mediates targeting of this protein to SGs in AtT-20 cells. Here, we show that the luminal domain specifically interacts with carboxypeptidase E (CPE), one of the key proteins involved in peptide hormone sorting, in a weakly acidic condition. The luminal domain consists of pro-sequence domain (pro) and subsequent N-side mature domain and the pro domain was preferentially required for phogrin interaction with CPE and for its targeting to SGs. Small interfering RNA-directed reduction of the CPE protein level resulted in an improper accumulation of phogrin at the trans-Golgi network in AtT-20 cells. This finding indicates that CPE is involved in the sorting process of phogrin to SGs. However, SG localization of CPE was hindered by overexpression of the phogrin mutants that lack the transport motif of binding to clathrin adaptor complexes. Phogrin-depleted AtT-20 cells also exhibited reduced CPE targeting and increased CPE degradation. Our results suggest that the luminal interaction between phogrin and CPE contributes to their targeting to SGs in a cooperative manner in neuroendocrine cells. 相似文献
12.
康建胜 《生物化学与生物物理进展》2023,50(6):1244-1244
目的 槲皮素是一种广泛分布于药用植物中的黄酮类化合物,传统被认为具有神经保护作用。在本研究中,我们利用位于大鼠脑干的花萼状突触的突触前神经末梢的进行膜片钳记录,研究槲皮素调控突触传递和可塑性的突触前机制。方法 利用全细胞膜片钳结合膜电容记录,在突触后记录微小兴奋性突触后电流(mEPSC),在突触前神经末梢记录钙內流和神经囊泡的释放、回收以及可立即释放库(RRP)的恢复动力学。并且利用纤维刺激在轴突给予5~200 Hz的刺激,诱发突触后EPSC,记录突触后短时程抑制(STD)。结果 100 μmol/L槲皮素不影响突触后mEPSC的振幅、频率以及AMPA受体的动力学特征。在突触前神经末梢,槲皮素不改变钙内流或囊泡的释放,但显著抑制胞吐后的网格蛋白依赖的慢速胞吞。抑制胞吞会导致突触前囊泡动员的减慢,降低RRP的补充速率,并且增强高频刺激下的短时程可塑性STD。结论 本研究为槲皮素调控中枢神经突触传递提供全新的突触前神经机制,槲皮素有助于抑制中枢神经过度兴奋,进而发挥神经保护作用。 相似文献
13.
Elizabeth Aby Katherine Gumps Amalia Roth Stacey Sigmon Sarah E Jenkins Joyce J Kim Nicholas J Kramer Karen D Parfitt Christopher A Korey 《Fly》2013,7(4):267-279
Infantile-onset neuronal ceroid lipofuscinosis (INCL) is a severe pediatric neurodegenerative disorder produced by mutations in the gene encoding palmitoyl-protein thioesterase 1 (Ppt1). This enzyme is responsible for the removal of a palmitate group from its substrate proteins, which may include presynaptic proteins like SNAP-25, cysteine string protein (CSP), dynamin, and synaptotagmin. The fruit fly, Drosophila melanogaster, has been a powerful model system for studying the functions of these proteins and the molecular basis of neurological disorders like the NCLs. Genetic modifier screens and tracer uptake studies in Ppt1 mutant larval garland cells have suggested that Ppt1 plays a role in endocytic trafficking. We have extended this analysis to examine the involvement of Ppt1 in synaptic function at the Drosophila larval neuromuscular junction (NMJ). Mutations in Ppt1 genetically interact with temperature sensitive mutations in the Drosophila dynamin gene shibire, accelerating the paralytic behavior of shibire mutants at 27 °C. Electrophysiological work in NMJs of Ppt1-deficient larvae has revealed an increase in miniature excitatory junctional potentials (EJPs) and a significant depression of evoked EJPs in response to repetitive (10 hz) stimulation. Endocytosis was further examined in Ppt1-mutant larvae using FM1–43 uptake assays, demonstrating a significant decrease in FM1–43 uptake at the mutant NMJs. Finally, Ppt1-deficient and Ppt1 point mutant larvae display defects in locomotion that are consistent with alterations in synaptic function. Taken together, our genetic, cellular, and electrophysiological analyses suggest a direct role for Ppt1 in synaptic vesicle exo- and endocytosis at motor nerve terminals of the Drosophila NMJ. 相似文献
14.
Visualization of cargo concentration by COPII minimal machinery in a planar lipid membrane
下载免费PDF全文

Kazuhito V Tabata Ken Sato Toru Ide Takayuki Nishizaka Akihiko Nakano Hiroyuki Noji 《The EMBO journal》2009,28(21):3279-3289
Selective protein export from the endoplasmic reticulum is mediated by COPII vesicles. Here, we investigated the dynamics of fluorescently labelled cargo and non‐cargo proteins during COPII vesicle formation using single‐molecule microscopy combined with an artificial planar lipid bilayer. Single‐molecule analysis showed that the Sar1p–Sec23/24p‐cargo complex, but not the Sar1p–Sec23/24p complex, undergoes partial dimerization before Sec13/31p recruitment. On addition of a complete COPII mixture, cargo molecules start to assemble into fluorescent spots and clusters followed by vesicle release from the planar membrane. We show that continuous GTPase cycles of Sar1p facilitate cargo concentration into COPII vesicle buds, and at the same time, non‐cargo proteins are excluded from cargo clusters. We propose that the minimal set of COPII components is required not only to concentrate cargo molecules, but also to mediate exclusion of non‐cargo proteins from the COPII vesicles. 相似文献
15.
16.
17.
Barbosa J Ferreira LT Martins-Silva C Santos MS Torres GE Caron MG Gomez MV Ferguson SS Prado MA Prado VF 《Journal of neurochemistry》2002,82(5):1221-1228
The pathways by which synaptic vesicle proteins reach their destination are not completely defined. Here we investigated the traffic of a green fluorescent protein (GFP)-tagged version of the vesicular acetylcholine transporter (VAChT) in cholinergic SN56 cells, a model system for neuronal processing of this cargo. GFP-VAChT accumulates in small vesicular compartments in varicosities, but perturbation of endocytosis with a dominant negative mutant of dynamin I-K44A impaired GFP-VAChT trafficking to these processes. The protein in this condition accumulated in the cell body plasma membrane and in large vesicular patches therein. A VAChT endocytic mutant (L485A/L486A) was also located at the plasma membrane, however, the protein was not sorted to dynamin I-K44A generated vesicles. A fusion protein containing the VAChT C-terminal tail precipitated the AP-2 adaptor protein complex from rat brain, suggesting that VAChT directly interacts with the endocytic complex. In addition, yeast two hybrid experiments indicated that the C-terminal tail of VAChT interacts with the micro subunit of AP-2 in a di-leucine (L485A/L486A) dependent fashion. These observations suggest that the di-leucine motif regulates sorting of VAChT from the soma plasma membrane through a clathrin dependent mechanism prior to the targeting of the transporter to varicosities. 相似文献
18.
19.
Two models of synaptic vesicle recycling have been intensely debated for decades: kiss‐and‐run, in which the vesicle opens and closes transiently, presumably through a small fusion pore, and full fusion, in which the vesicle collapses into the plasma membrane and is retrieved by clathrin‐coat‐dependent processes. Conceptually, it seems that kiss‐and‐run would be faster and would retrieve vesicles with greater fidelity. Is this the case? This review discusses recent evidence for both models. We conclude that both mechanisms allow for high fidelity of vesicle recycling. Also, the presence in the plasma membrane of a depot of previously fused vesicles that are already interacting with the endocytotic machinery (the ‘readily retrievable’ vesicles) allows full fusion to trigger quite fast endocytosis, further blurring the efficiency differences between the two models. 相似文献
20.
The first calpain protease was discovered over 40 years ago now, yet despite the vast amount of literature that has subsequently emerged detailing their involvement in the pathophysiology of a variety of human diseases, it is only in the last decade that calpain-mediated actions along the secretory pathway have begun to emerge. However, the number of secretory pathway substrates identified and their diversity of function continues to grow. This review summarizes our current knowledge of calpain-mediated mechanisms of action that are pertinent to synaptic vesicle assembly and budding, cytoskeletal organization, endosomal recycling, and exocytotic membrane fusion. 相似文献