首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heterogeneity and differentiation potential of mitotically active cells in the adult brain were studied by labeling adult rats with BrdU, and isolating an enriched population of cycling cells from neocortex and from subcortical white matter. The majority of this population isolated from either brain region labeled with O4, an early oligodendrocyte marker. In tissue culture, these O4(+) progenitors acquired galactocerebroside, a glycolipid of mature oligodendrocytes, but not GFAP, an intermediate filament of astrocytes. A minority population expressed the intermediate filament protein, vimentin, but not O4. This population expressed GFAP after several days in culture. A third population of cycling cells, expressing the gangliosides labeled with the A2B5 antibody, represented a minority population in subcortical white matter, but one of the major cycling populations in cortex, with substantial overlap with O4. Small populations of cycling NG2(+) cells also were observed. Thus, the cycling cells in the adult brain are heterogeneous, and the majority appear to belong to glial lineages.  相似文献   

2.
The glial fibrillary acidic protein (GFAP) is an astrocyte-specific member of the class III intermediate filament proteins. It is generally used as a specific marker of astrocytes in the central nervous system (CNS). We isolated a GFAP cDNA from the brain and spinal cord cDNA library of Gekko japonicus, and prepared polyclonal antibodies against gecko GFAP to provide useful tools for further immunochemistry studies. Both the real-time quantitative PCR and western blot results revealed that the expression of GFAP in the spinal cord after transection increased, reaching its maximum level after 3 days, and then gradually decreased over the rest of the 2 weeks of the experiment. Immunohistochemical analyses demonstrated that the increase in GFAP-positive labeling was restricted to the white matter rather than the gray matter. In particular, a slight increase in the number of GFAP positive star-shaped astrocytes was detected in the ventral and lateral regions of the white matter. Our results indicate that reactive astrogliosis in the gecko spinal cord took place primarily in the white matter during a short time interval, suggesting that the specific astrogliosis evaluated by GFAP expression might be advantageous in spinal cord regeneration.  相似文献   

3.
The goal of the present work was to study composition and spatial-temporal distribution of cells containing various proteins of intermediate filaments (nestin, vimentin, GFAP) in various brain areas at the early postnatal period of rat ontogenesis. By using methods of immunohistochemical determination of proteins of intermediate filaments, it has been found that at the early postnatal period of development, in the course of maturation of the nervous tissue, in the cells of cortex, hippocampus, and subventricular area, there occurred changes of immunohistochemical profile of intermediate filaments (ratio of immunopositive (+) and immunonegative (?) cells): nestin+/vimentin+/GFAP? cells become nestin?/vimentin?/GFAP+.  相似文献   

4.
Traditionally, astrocytes are divided into fibrous and protoplasmic types based on their morphologic appearance. Here the cultures were prepared separately from the adult human cortical gray and white matter of brain biopsies. Both cultures differed only in the number of glial fibrillary acidic protein (GFAP)-positive cells. In the gray matter these were absent or rare, whereas in confluent cultures from the white matter they reached 0.1% of all cells. Three main morphologic types of GFAP-positive cells were found in this study: stellate, bipolar and large flat cells. GFAP-positive cells with two or three long processes mimic a neuron-like morphology. We did not find process-bearing cells expressing neuronal markers (MAP-2, NF, and N-CAM). The conflicting reports concerning GFAP immunostaining and the study dealing with the presence of putative neurons in adult human brain cultures are discussed with respect to these findings. The latter classification of astrocytes into type 1 and type 2 is based on immunostaining to A2B5 antigen: type 1 (GFAP+/A2B5−) and type 2 (GFAP+/A2B5+) astrocytes are proposed to be analogous to protoplasmic and fibrous astrocytes, respectively. In adult human brain cultures we found only small amount of A2B5-positive cells. Double immunofluorescence revealed that astroglial cells of similar fibrous or bipolar shape grown on one coverslip were either GFAP+/A2B5+ or GFAP+/A2B5−. On the other hand, the A2B5+/GFAP− immunophenotype was not observed. These results indicate that in general the cell phenotype from adult human brain tissue is not well established when they are in culture.  相似文献   

5.
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein considered to be the best astroglial marker. However, the predominant cell population in adult human brain tissue cultures does not express GFAP; these cells have been termed “glia-like” cells. The basic question about histological origin of adult human brain cultures remains unanswered. Some authors showed that “glia-like” cells in adult human brain cultures might be of non-glial origin. We examined primary explant tissue cultures derived from 70 adult human brain biopsies. Within first 5–10 days approximately 5–10% of the small explants became attached. Outgrowing cells were mostly flat cells. These cells formed confluent layer over 3–6 weeks in culture. At confluence the cultures contained 2–5% of microglial cells, 0.1% GFAP-positive astrocytes, less than 0.01% oligodendrocytes and 95–98% GFAP-negative “glia-like” cells. This population of flat “glia-like” cells was positively stained for vimentin, fibronectin, and 20–30% of these cells stained for nestin. Our findings revealed that 1 mM dibutyryl-cAMP addition, in serum free conditions, induced a reversible stellation in 5-10% of the flat “glia-like” cells but did not induce the expression of GFAP or nestin in morphologically changed stellate cells. These results demonstrate that “glia-like” cells in primary adult human brain cultures constitute heterogeneous cell populations albeit with similar morphological features. Two distinct subpopulations have been shown: (i) the one immunostained for nestin; and (ii) the other reactive for dibutyryl-cAMP treatment.  相似文献   

6.
Summary In unfixed cryostat sections of the brains of early postnatal and adult rats, we screened for cells containing vimentin-positive intermediate filaments (VI+-IFs) by applying a panel of four monoclonal antibodies (Mabs VI-01, VI-02, VI-05 and VI-5B3) using indirect immunofluorescence. All of the Mabs stained VI+-IFs in the stromal part of the choroid plexus, in endothelial cells of blood vessels and in meninges in both adult and immature brains, although with varying strength (VI-5B3 and VI-01 stained more strongly than VI-05 and VI-02). In the brain parenchyma of adults, intense staining was mainly localized in ventricular ependymal cells (VI-5B3/VI-01>VI-02/VI-05) and fibrous astrocyte-like cells (FAs). In the immature brain, the ependymall cells were activated in appearance, with evidence of cell enlargement, greater spreading of VI+-IFs within the cytoplasma and more pronounced VI+ cytoplasmic protrusions into the brain parenchyma.VI+-FAs were found near the ependymal and meningead borders as well as in the white matter tracts of adult brain (VI-5B3/VI-01>VI-05>VI-02). In immature animals, VI+-FAs were less frequently encountered in the forebrain regions, except in and near the subependymal layer (in the adjacent parenchyma) as well as in submeningeal layers. Weaker staining was usually clicited by Mabs VI-02 and VI-05. In the cerebellum, Bergmann cell fibres were stained in both age groups. In adults, the most intense fluorescence usually occurred in segments close to the pia (VI-5B3/VI-01>VI-05>VI-02). In immature animals, the Bergmann cell fibres were less straight, less smooth and thicker, and were stained along their whole length by all Mabs except VI-02. In adults, VI+-FAs were observed in the internal granular layer (VI-5B3 and VI-01) and, relatively more often, in the white matter (VI-05). In immature animals, a quasi-continuous mesh-work of VI+ cells was detected at some sites of the cerebellum, especially when VI-01 and VI-5B3 were used. With maturation, reduced staining was produced by all VI Mabs in the choroid plexus. We have thus demonstrated that VI is a common molecular denominator of cerebrospinal-fluid and/or blood-washed cells as well as of glial fibers contacting these cells. The differences in the staining of VI+ cells by various Mabs probably reflect an immunological heterogeneity of VI+-IFs based on the varying accessibility of the individual VI epitopes. This might be due to alterations in the tertiary structure of VI caused, for instance, by phosphorylation or other posttranslational processes. The actual structural state of VI may explain the variations in the immunostainability of astrocytes and also in the staining obtained using classical impregnation methods within the brain and/or its regions.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

7.
It was shown that the glial fibrillary acidic protein (GFAP) content in developing (fetal) human brain is sharply increased. The expression of GFAP was observed already on the 7th-8th week after gestation, the GFAP concentration being less than 0.05% in comparison with adult brain. GFAP can be immunohistochemically detected in radial glial cells. At early stages of development the presence of antigenic determinants of 68 kDa and 100 kDa polypeptides interacting with monoclonal antibodies alongside with native GFAP (51 kDa) and its low molecular weight forms was demonstrated. These antigenic determinants cannot be detected at later stages of development and are absent in adult brain. The data obtained testify to changes in the gene expression of intermediate filament proteins at early stages of human brain ontogenesis.  相似文献   

8.
Summary Expression of intermediate filament proteins was studied in human developing spinal cord using immunoperoxidase and double-label immunofluorescence methods with monoclonal antibodies to vimentin and glial fibrillary acidic protein (GFAP). Vimentin was found in the processes of radial glial cells in 6-week embryos, while GFAP appeared in vimentin-positive astroglial cells at 8–10 weeks. GFAP and vimentin were present in approximately equal amounts in differentiating astrocytes in 23-week spinal cord. In 30-week fetuses, astrocytes reacted strongly for GFAP, while both the reaction intensity and the number of vimentin-positive cells fluctuated predominantly in the grey matter. No clear-cut transition from vimentin to GFAP was noticed during the development of astrocytes. The majority of ependymal cells in 23-week fetuses contained vimentin but only a few of them reacted for GFAP. The expression of vimentin continued during the whole development of the ependymal layer, in contrast to the reactivity for GFAP which disappeared between the 30th week and term.  相似文献   

9.
Glial fibrillary acidic protein (GFAP) is the main component of the intermediate filaments in cells of astroglial lineage, including astrocytes in the CNS, nonmyelin forming Schwann cells and enteric glia. To address the function of GFAP in vivo, we have disrupted the GFAP gene in mice via targeted mutation in embryonic stem cells. Mice lacking GFAP developed normally, reached adulthood and reproduced. We did not find any abnormalities in the histological architecture of the CNS, in their behavior, motility, memory, blood-brain barrier function, myenteric plexi histology or intestinal peristaltic movement. Comparisons between GFAP and S-100 immunohistochemical staining patterns in the hippocampus of wild-type and mutant mice suggested a normal abundance of astrocytes in GFAP-negative mice, however, in contrast to wild-types, GFAP-negative astrocytes of the hippocampus and in the white matter of the spinal cord were completely lacking intermediate filaments. This shows that the loss of GFAP intermediate filaments is not compensated for by the up-regulation of other intermediate filament proteins, such as vimentin. The GFAP-negative mice displayed post-traumatic reactive gliosis, which suggests that GFAP up-regulation, a hallmark of reactive gliosis, is not an obligatory requirement for this process.  相似文献   

10.
White matter injury is the most frequently observed brain lesion in preterm infants. The etiology remains unclear, however, both cerebral hypoperfusion and intrauterine infections have been suggested as risk factors. We compared the neuropathological outcome, including the effect on oligodendrocytes, astrocytes, and microglia, following either systemic asphyxia or endotoxemia in fetal sheep at midgestation. Fetal sheep were subjected to either 25 minutes of umbilical cord occlusion or systemic endotoxemia by administration of Escherichia coli lipopolysaccharide (LPS O111:B4, 100 ng/kg, IV). Periventricular white matter lesions were observed in 2 of 6 asphyxiated fetuses, whereas the remaining animals showed diffuse injury throughout the subcortical white matter and neuronal necrosis in subcortical regions, including the striatum and hippocampus. LPS-treatment resulted in focal inflammatory infiltrates and cystic lesions in periventricular white matter in 2 of 5 animals, but with no neuron specific injury. Both experimental paradigms resulted in microglia activation in the white matter, damaged astrocytes, and loss of oligodendrocytes. These results show that the white matter at midgestation is sensitive to injury following both systemic asphyxia and endotoxemia. Asphyxia induced lesions in both white and subcortical grey matter in association with microglia activation, and endotoxemia resulted in selective white matter damage and inflammation.  相似文献   

11.
Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU+ cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU+ cells, very few are mash1+ or nestin+ stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1+ microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.  相似文献   

12.
Wang  X. S.  Ong  W. Y.  Connor  J. R. 《Brain Cell Biology》2001,30(4):353-360
We have studied by immunocytochemistry, the distribution of DMT-1, a cellular iron transporter responsible for transport of metal irons from the plasma membrane to endosomes, in the normal monkey cerebral neocortex and hippocampus. Light to moderate DMT-1 staining was observed in glial cell bodies in the neocortex, the subcortical white matter, and the hippocampus. Despite light labeling of cell bodies, glial end feet around cortical and subcortical blood vessels were heavily labeled. In the neocortex, the glial cell bodies displayed the morphological features of protoplasmic astrocytes. Labeled glial cells in the subcortical white matter contained dense bundles of glial filaments and were identified as fibrous astrocytes. The observation that DMT-1 was present on astrocytic endfeet suggests that these cells are involved in uptake of iron from endothelial cells. It is possible that the iron could then be redistributed into the extracellular space in the brain parenchyma.  相似文献   

13.
We report an autopsy case of tuberous sclerosis. A 19-year-old Japanese man had shown facial adenoma sebaceum, intractable convulsive seizures and severe mental retardation. Gross inspection of the brain showed a cortical tuber from the orbital frontal lobe to the rhinencephalon of the left side and a few subependymal nodules. Histological examination revealed many cortical tubers in the cerebral hemispheres, a few subependymal nodules with calcification and multifocal clusters of heterotopic cells in the white matter (white matter nodules). In these lesions, massive giant cells with abundant eosinophilic cytoplasm and without Nissl substances were found. Although the size and shape of the giant cells were variable, the majority of them were gemistcytic, ovoid or polygonal. Immunohistochemistry was employed in these lesions using antibodies against neurofilament protein (NFP), glial fibrillary acidic protein (GFAP), vimentin (VM) and myelin basic protein (MBP). In the cortical tuber, the majority of the giant cells were positive for both NFP and VM, but a few were positive for GFAP. All of them were negative for MBP. In the subependymal nodule and white matter nodule, the majority of the giant cells were positive for NFP, but a few were positive for VM, and none were positive for either GFAP and MBP. These findings suggest that the majority of the giant cells may be immature cells toward neuronal series and a few may be those toward astroglial series. These findings also indicate that the giant cells in the subependymal nodule and white matter nodule may be more differentiated than those in the cortical tuber. The nature of the giant cells in tuberous sclerosis is discussed.  相似文献   

14.
Receptor agonists that increase cyclic AMP levels in cultured astroglia have been shown to increase 32P-labeling of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin in these cells. Experiments were designed to determine if the increase in 32P-labeling resulted from either an increase in the turnover or net number of phosphates associated with the intermediate filament proteins and if the phosphorylation of these proteins causally affected astroglial morphology. Time course experiments indicated that 6-8 h were required to reach steady-state 32P-labeling of both GFAP and vimentin. Treatment with forskolin (10 microM) after steady-state 32P-labeling increased GFAP and vimentin phosphorylation fourfold and twofold, respectively, and also induced a morphological change from polygonal to process-bearing cells within 20-30 min of drug addition. Cells incubated in media containing brain extract (30%) for 24 h at 37 degrees C and then 3 h at 23 degrees C underwent changes from polygonal to process-bearing cells with no apparent increase in the phosphorylation of either GFAP or vimentin. Treatment of process-bearing cells (induced by brain extract) or polygonal cells with 10 microM forskolin at 23 degrees C resulted in a three- to fourfold increase in GFAP phosphorylation without significant morphological changes. These results suggest that forskolin stimulation of GFAP and vimentin increases net number of phosphates associated with these intermediate filament proteins and that the resulting increase in phosphorylation can be dissociated from morphological changes.  相似文献   

15.
IF (intermediate filament) proteins can be cleaved by caspases to generate proapoptotic fragments as shown for desmin. These fragments can also cause filament aggregation. The hypothesis is that disease-causing mutations in IF proteins and their subsequent characteristic histopathological aggregates could involve caspases. GFAP (glial fibrillary acidic protein), a closely related IF protein expressed mainly in astrocytes, is also a putative caspase substrate. Mutations in GFAP cause AxD (Alexander disease). The overexpression of wild-type or mutant GFAP promotes cytoplasmic aggregate formation, with caspase activation and GFAP proteolysis. In this study, we report that GFAP is cleaved specifically by caspase 6 at VELD225 in its L12 linker domain in vitro. Caspase cleavage of GFAP at Asp225 produces two major cleavage products. While the C-GFAP (C-terminal GFAP) is unable to assemble into filaments, the N-GFAP (N-terminal GFAP) forms filamentous structures that are variable in width and prone to aggregation. The effect of N-GFAP is dominant, thus affecting normal filament assembly in a way that promotes filament aggregation. Transient transfection of N-GFAP into a human astrocytoma cell line induces the formation of cytoplasmic aggregates, which also disrupt the endogenous GFAP networks. In addition, we generated a neo-epitope antibody that recognizes caspase-cleaved but not the intact GFAP. Using this antibody, we demonstrate the presence of the caspase-generated GFAP fragment in transfected cells expressing a disease-causing mutant GFAP and in two mouse models of AxD. These findings suggest that caspase-mediated GFAP proteolysis may be a common event in the context of both the GFAP mutation and excess.  相似文献   

16.
During brain development, neurons and glias are generated from neural stem cells and more limited intermediate neural progenitors (INPs). Numerous studies have revealed the mechanisms of development of neural stem cells. However, the signaling pathways that govern the development of INPs are largely unknown. The cerebellum is suitable for examining this issue because cerebellar cortical inhibitory neurons such as basket and stellate cells are derived from small Pax2+ interneuronal progenitors. Here, we show that Sox2/Pax2+ and Sox2+/Pax2 progenitors, 2 types of interneuronal progenitors of basket and stellate cells, exist in the cerebellar white matter (WM) and that the former arise from the latter during the first postnatal week. Moreover, RBP-J promotes the neurogenesis of stellate and basket cells by converting Sox2+/Pax2 interneuronal progenitors to more mature Sox2/Pax2+ interneuronal progenitors. This study shows a novel RBP-J function that promotes INP differentiation.  相似文献   

17.
Coiled-coil domain containing 85c (Ccdc85c) is a causative gene for genetic hydrocephalus and subcortical heterotopia with frequent brain hemorrhage. In the present study, we examined the expression pattern of CCDC85C protein and intermediate filament proteins, such as nestin, vimentin, GFAP, and cytokeratin AE1/AE3, during lateral ventricle development in rats. CCDC85C was expressed in the neuroepithelial cells of the dorsal lateral ventricle wall, diminishing with development and almost disappearing at postnatal day 20. By immunoelectron microscopy, CCDC85C was localized in the cell-cell junction and apical membrane. The expression of nestin and vimentin was decreased in the wall of the lateral ventricle in manner similar to CCDC85C, but GFAP expression started immediately after birth and became stronger with age. Moreover, cytokeratin expression was found at postnatal day 13 and increased at postnatal day 20 in conjunction with the disappearance of CCDC85C expression. Taken together, CCDC85C is expressed in the cell-cell junctions lining the wall of the lateral ventricle and plays a role in neural development with other intermediate filaments in the embryonic and postnatal periods. Our chronological study will help to relate CCDC85C protein with intermediate filaments to elucidate the detailed role of CCDC85C protein during neurogenesis.  相似文献   

18.
Shark lymphocytes have been characterized by the presence or absence of surface immunoglobulin (SIg). Thus, SIg+ cells are B lymphocytes, and SIg cells are presumed to include the shark T cell subset, as well as other minor subsets of lymphocytes. Few functional studies have been performed to characterize the nature of either lymphocyte population. To date, there is no information concerning the shark T cell receptor. The majority of adult mammalian T cell receptors are composed of α and β chain heterodimers while a minority use γ and δ chains. The discussion presented here explores the evidence that the majority of shark lymphocytes are analogous to mammalian T and B lymphocytes that appear during early fetal development. The hypotheses considered suggest that shark T cells are similar to γδ T cell receptor (TCR)-bearing mammalian T lymphocytes, and that shark B cells are the primitive equivalent of neonatal and newborn primary B cells.  相似文献   

19.
Unlike mammals, some fish, including carp and trout, have a continuously growing brain. The glial architecture of teleost brain has been intensively studied in the carp and few data exist on trout brain. In this study, using immunoblotting we characterized the topographic distribution of glial fibrillary acidic protein (GFAP) in larval and adult rainbow trout brain and studied by immunohistochemistry the distribution and morphology of GFAP-immunoreactive cell systems in the rainbow trout hindbrain and spinal cord. Immunoblotting yielded a double band with an apparent molecular weight of 50-52 kDa in the spinal cord homogenate in the trout larval and adult stages. In the adult hindbrain and forebrain, our antibody cross reacted also with a second band at a higher molecular weight (90 kDa). Because the forebrain contained this band alone the two brain regions might contain two distinct isoforms. Conversely, the larval total brain homogenate contained the heavy 90 kDa band alone. Hence the heavy band might be a GFAP protein dimer or vimentin/GFAP copolymer reflecting nerve fiber growth and elongation, or the two isoforms might indicate two distinct astroglial cell types as recently proposed in the zebrafish. In sections from trout hindbrain and spinal cord the antibody detected a GFAP-immunoreactive glial fiber system observed in the raphe and in the glial septa separating the nerve tracts. These radial glia fibers thickened toward the pial surface, where they formed glial end feet. The antibody also labeled perivascular glia around blood vessels in the white matter, and the ependymoglial plexus surrounding the ventricular surface in the grey matter. Last, it labeled round astrocytes. The GFAP-immunoreactive glial systems had similar distribution patterns in the adult and larval spinal cord suggesting early differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号