首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutualisms affect the biodiversity, distribution and abundance of biological communities. However, ecological processes that drive mutualism-related shifts in population structure are often unclear and must be examined to elucidate how complex, multi-species mutualistic networks are formed and structured. In this study, we investigated how the presence of key marine mutualistic partners can drive the organisation of local communities on coral reefs. The cleaner wrasse, Labroides dimidiatus, removes ectoparasites and reduces stress hormones for multiple reef fish species, and their presence on coral reefs increases fish abundance and diversity. Such changes in population structure could be driven by increased recruitment of larval fish at settlement, or by post-settlement processes such as modified levels of migration or predation. We conducted a controlled field experiment to examine the effect of cleaners on recruitment processes of a common group of reef fishes, and showed that small patch reefs (61–285 m2) with cleaner wrasse had higher abundances of damselfish recruits than reefs from which cleaner wrasse had been removed over a 12-year period. However, the presence of cleaner wrasse did not affect species diversity of damselfish recruits. Our study provides evidence of the ecological processes that underpin changes in local population structure in the presence of a key mutualistic partner.  相似文献   

2.
Many coral reef fish species use mangrove and seagrass beds as nursery areas. However, in certain regions, the absence or scarcity of such habitats suggests that juvenile coral reef fish may be seeking refuge elsewhere. The underlying biogenic substratum of most coral reefs is structurally complex and provides many types of refuge. However, on young or subtropical coral reefs, species may be more reliant on the living coral layer as nursery areas. Such is the case on the high-latitude coral reefs of South Africa where the coral communities consist of a thin veneer of coral overlaying late Pleistocene bedrock. Thus, the morphology of coral species may be a major determinant in the availability of refuge space. Acropora austera is a branching species that forms large patches with high structural complexity. Associated with these patches is a diverse community of fish species, particularly juveniles. Over the past decade, several large (>100 m2) A. austera patches at Sodwana Bay have been diminishing for unknown reasons and there is little evidence of their replacement or regrowth. Seven patches of A. austera (AP) and non-A. austera (NAP) were selected and monitored for 12 months using visual surveys to investigate the importance of AP as refugia and nursery areas. There were significant differences in fish communities between AP and NAP habitats. In total, 110 species were recorded within the patches compared to 101 species outside the patches. Labrids and pomacentrids were the dominant species in the AP habitats, while juvenile scarids, acanthurids, chaetodons and serranids were also abundant. The diversity and abundance of fish species increased significantly with AP size. As the most structurally complex coral species on the reefs, the loss of APs may have significant implications for the recruitment and survival of certain fish species.  相似文献   

3.
Disturbance,coral reef communities,and changing ecological paradigms   总被引:4,自引:0,他引:4  
We examine changing ecological theory regarding the role of disturbance in natural communities and relate past and emerging paradigms to coral reefs. We explore the elements of this theory, including patterns (diversity, distribution, and abundance) and processes (competition, succession, and disturbance), using currently evolving notions concerning matters of scale (temporal and spatial), local versus regional species richness, and the equilibrium versus nonequilibrium controversy. We conclude that any attempt to categorize coral reef communities with respect to disturbance regimes will depend on the question being asked and the desired level of resolution: local assemblage versus regional species pool, successional versus geological time, and on the taxonomic and tropic affinities of species included in the study. As with many communities in nature, coral reefs will prove to be mosaics of species assemblages with equilibrial and nonequilibrial dynamics.  相似文献   

4.
Spatial Resilience of Coral Reefs   总被引:1,自引:0,他引:1  
There have been several earlier studies that addressed the influence of natural disturbance regimes on coral reefs. Humans alter natural disturbance regimes, introduce new stressors, and modify background conditions of reefs. We focus on how coral reef ecosystems relate to disturbance in an increasingly human-dominated environment. The concept of ecosystem resilience—that is, the capacity of complex systems with multiple stable states to absorb disturbance, reorganize, and adapt to change—is central in this context. Instead of focusing on the recovery of certain species and populations within disturbed sites of individual reefs, we address spatial resilience—that is, the dynamic capacity of a reef matrix to reorganize and maintain ecosystem function following disturbance. The interplay between disturbance and ecosystem resilience is highlighted. We begin the identification of spatial sources of resilience in dynamic seascapes and exemplify and discuss the relation between “ecological memory” (biological legacies, mobile link species, and support areas) and functional diversity for seascape resilience. Managing for resilience in dynamic seascapes not only enhances the likelihood of conserving coral reefs, it also provides insurance to society by sustaining essential ecosystem services. Received 25 February 2000; accepted 31 January 2001.  相似文献   

5.
Few studies have considered how seagrass fish assemblages are influenced by surrounding habitats. This information is needed for a better understanding of the connectivity between tropical coastal ecosystems. To study the effects of surrounding habitats on the composition, diversity and densities of coral reef fish species on seagrass beds, underwater visual census surveys were carried out in two seagrass habitat types at various locations along the coast of Zanzibar (Tanzania) in the western Indian Ocean. Fish assemblages of seagrass beds in a marine embayment with large areas of mangroves (bay seagrasses) situated 9 km away from coral reefs were compared with those of seagrass beds situated on the continental shelf adjacent to coral reefs (reef seagrasses). No differences in total fish density, total species richness or total juvenile fish density and species richness were observed between the two seagrass habitat types. However, at species level, nine species showed significantly higher densities in bay seagrasses, while eight other species showed significantly higher densities in reef seagrasses. Another four species were exclusively observed in bay seagrasses. Since seagrass complexity could not be related to these differences, it is suggested that the arrangement of seagrass beds in the surrounding landscape (i.e. the arrangement on the continental shelf adjacent to the coral reef, or the arrangement in an embayment with mangroves situated away from reefs) has a possible effect on the occurrence of various reef-associated fish species on seagrass beds. Fish migration from or to the seagrass beds and recruitment and settlement patterns of larvae possibly explain these observations. Juvenile fish densities were similar in the two types of seagrass habitats indicating that seagrass beds adjacent to coral reefs also function as important juvenile habitats, even though they may be subject to higher levels of predation. On the contrary, the density and species richness of adult fish was significantly higher on reef seagrasses than on bay seagrasses, indicating that proximity to the coral reef increases density of adult fish on reef seagrasses, and/or that ontogenetic shifts to the reef may reduce adult density on bay seagrasses.  相似文献   

6.
Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.  相似文献   

7.
Removing predatory fishes has effects that cascade through ecosystems via interactions between species and functional groups. In Kenyan reef lagoons, fishing-induced trophic cascades produce sea urchin-dominated grazing communities that greatly reduce the overall cover of crustose coralline algae (CCA). Certain species of CCA enhance coral recruitment by chemically inducing coral settlement. If sea urchin grazing reduces cover of settlement-inducing CCA, coral recruitment and hence juvenile coral abundance may also decline on fished reefs. To determine whether fishing-induced changes in CCA influence coral recruitment and abundance, we compared (1) CCA taxonomic compositions and (2) taxon-specific associations between CCA and juvenile corals under three fisheries management systems: closed, gear-restricted, and open-access. On fished reefs (gear-restricted and open-access), abundances of two species of settlement-inducing CCA, Hydrolithon reinboldii and H. onkodes, were half those on closed reefs. On both closed and fished reefs, juveniles of four common coral families (Poritidae, Pocilloporidae, Agariciidae, and Faviidae) were more abundant on Hydrolithon than on any other settlement substrate. Coral densities were positively correlated with Hydrolithon spp. cover and were significantly lower on fished than on closed reefs, suggesting that fishing indirectly reduces coral recruitment or juvenile success over large spatial scales via reduction in settlement-inducing CCA. Therefore, managing reefs for higher cover of settlement-inducing CCA may enhance coral recruitment or juvenile survival and help to maintain the ecological and structural stability of reefs.  相似文献   

8.
Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community‐level phase shifts from coral‐ to algal‐dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No‐take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio‐economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post‐disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post‐disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional‐scale population persistence and recovery.  相似文献   

9.
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.  相似文献   

10.
Coral reef ecosystems are degrading through multiple disturbances that are becoming more frequent and severe. The complexities of this degradation have been studied in detail, but little work has assessed characteristics that allow reefs to bounce back and recover between pulse disturbance events. We quantitatively review recovery rates of coral cover from pulse disturbance events among 48 different reef locations, testing the relative roles of disturbance characteristics, reef characteristics, connectivity and anthropogenic influences. Reefs in the western Pacific Ocean had the fastest recovery, whereas reefs in the geographically isolated eastern Pacific Ocean were slowest to recover, reflecting regional differences in coral composition, fish functional diversity and geographic isolation. Disturbances that opened up large areas of benthic space recovered quickly, potentially because of nonlinear recovery where recruitment rates were high. The type of disturbance had a limited effect on subsequent rates of reef recovery, although recovery was faster following crown-of-thorns starfish outbreaks. This inconsequential role of disturbance type may be in part due to the role of unaltered structural complexity in maintaining key reef processes, such as recruitment and herbivory. Few studies explicitly recorded potential ecological determinants of recovery, such as recruitment rates, structural complexity of habitat and the functional composition of reef-associated fish. There was some evidence of slower recovery rates within protected areas compared with other management systems and fished areas, which may reflect the higher initial coral cover in protected areas rather than reflecting a management effect. A better understanding of the driving role of processes, structural complexity and diversity on recovery may enable more appropriate management actions that support coral-dominated ecosystems in our changing climate.  相似文献   

11.
We present a Markov chain model of succession in a rocky subtidal community based on a long-term (1986-1994) study of subtidal invertebrates (14 species) at Ammen Rock Pinnacle in the Gulf of Maine. The model describes successional processes (disturbance, colonization, species persistence, and replacement), the equilibrium (stationary) community, and the rate of convergence. We described successional dynamics by species turnover rates, recurrence times, and the entropy of the transition matrix. We used perturbation analysis to quantify the response of diversity to successional rates and species removals. The equilibrium community was dominated by an encrusting sponge (Hymedesmia) and a bryozoan (Crisia eburnea). The equilibrium structure explained 98% of the variance in observed species frequencies. Dominant species have low probabilities of disturbance and high rates of colonization and persistence. On average, species turn over every 3.4 years. Recurrence times varied among species (7-268 years); rare species had the longest recurrence times. The community converged to equilibrium quickly (9.5 years), as measured by Dobrushin's coefficient of ergodicity. The largest changes in evenness would result from removal of the dominant sponge Hymedesmia. Subdominant species appear to increase evenness by slowing the dominance of Hymedesmia. Comparison of the subtidal community with intertidal and coral reef communities revealed that disturbance rates are an order of magnitude higher in coral reef than in rocky intertidal and subtidal communities. Colonization rates and turnover times, however, are lowest and longest in coral reefs, highest and shortest in intertidal communities, and intermediate in subtidal communities.  相似文献   

12.
Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes (Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.  相似文献   

13.
Tuckett  C. A.  de Bettignies  T.  Fromont  J.  Wernberg  T. 《Coral reefs (Online)》2017,36(3):947-956

Globally, many temperate marine communities have experienced significant temperature increases over recent decades in the form of gradual warming and heatwaves. As a result, these communities are shifting towards increasingly subtropical and tropical species compositions. Expanding coral populations have been reported from several temperate reef ecosystems along warming coastlines; these changes have been attributed to direct effects of gradual warming over decades. In contrast, increases in coral populations following shorter-term extreme warming events have rarely been documented. In this study, we compared coral populations on 17 temperate reefs in Western Australia before (2005/06) and after (2013) multiple marine heatwaves (2010–2012) affected the entire coastline. We hypothesised that coral communities would expand and change as a consequence of increasing local populations and recruitment of warm-affinity species. We found differences in coral community structure over time, driven primarily by a fourfold increase of one local species, Plesiastrea versipora, rather than recruitment of warm-affinity species. Coral populations became strongly dominated by small size classes, indicative of recent increased recruitment or recruit survival. These changes were likely facilitated by competitive release of corals from dominant temperate seaweeds, which perished during the heatwaves, rather than driven by direct temperature effects. Overall, as corals are inherently warm-water taxa not commonly associated with seaweed-dominated temperate reefs, these findings are consistent with a net tropicalisation. Our study draws attention to processes other than gradual warming that also influence the trajectory of temperate reefs in a changing ocean.

  相似文献   

14.
The South China Sea (SCS) includes large areas of extensive coral reef development but its reefs are still poorly known. Yongle atoll is the biggest typical atoll in the Xisha Islands, central of SCS. Lingyang Reef is an isolated small atoll within the whole big Yongle atoll. A total of 144 and 119 coral species were recorded at big Yongle atoll and small Lingyang Reef, respectively. The real coral richness might be higher because species accumulation curve did not saturate. The coral diversity pattern was similar between big Yongle atoll and small Lingyang Reef. Coral communities fell into three clusters, consistent with their habitats on reef slope, reef flat and lagoon slope. The highest coral diversity was observed on reef slopes and the lowest coral diversity was found on lagoon slope. Genera richness was a better proxy for representing coral species diversity on both the big and small atoll but percent live coral cover was not a robust proxy on the small atoll, which only explained 24% of species diversity. This study demonstrated high coral diversity with consistent pattern along habitat types, as has been shown from many other reefs. While far from exhaustive, the study allows first glimpses on how much biodiversity is contained on SCS coral reefs, and hopes to give an impetus to their conservation. The study also suggests that simplified surveys at a small scale and the use of genera richness as an effective proxy for overall diversity can indeed provide important information to rapidly monitor and evaluate the coral diversity in remote locations.  相似文献   

15.
Coral communities of Biscayne National Park (BNP) on offshore linear bank-barrier reefs are depauperate of reef corals and have little topographic relief, while those on lagoonal patch reefs have greater coral cover and species richness despite presumably more stressful environmental regimes closer to shore. We hypothesized that differences in rates of coral recruitment and/or of coral survivorship were responsible for these differences in community structure. These processes were investigated by measuring: (1) juvenile and adult coral densities, and (2) size-frequency distributions of smaller coral size classes, at three pairs of bank- and patch-reefs distributed along the north-south range of coral reefs within the Park. In addition, small quadrats (0.25 m2) were censused for colonies <2 cm in size on three reefs (one offshore and one patch reef in the central park, and one intermediate reef at the southern end), and re-surveyed after 1 year. Density and size frequency data confirmed that large coral colonies were virtually absent from the offshore reefs, but showed that juvenile corals were common and had similar densities to those of adjacent bank and patch reefs. Large coral colonies were more common on inshore patch reefs, suggesting lower survivorship (higher mortality) of small and intermediate sized colonies on the offshore reefs. The more limited small-quadrat data showed similar survivorship rates and initial and final juvenile densities at all three sites, but a higher influx of new recruits to the patch reef site during the single annual study period. We consider the size-frequency data to be a better indicator of juvenile coral dynamics, since it is a more time-integrated measurement and was replicated at more sites. We conclude that lack of recruitment does not appear to explain the impoverished coral communities on offshore bank reefs in BNP. Instead, higher juvenile coral mortality appears to be a dominant factor structuring these communities. Accepted: 9 September 1999  相似文献   

16.
Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into the future.  相似文献   

17.
Ecological communities are reorganizing in response to warming temperatures. For continuous ocean habitats this reorganization is characterized by large‐scale species redistribution, but for tropical discontinuous habitats such as coral reefs, spatial isolation coupled with strong habitat dependence of fish species imply that turnover and local extinctions are more significant mechanisms. In these systems, transient marine heatwaves are causing coral bleaching and profoundly altering habitat structure, yet despite severe bleaching events becoming more frequent and projections indicating annual severe bleaching by the 2050s at most reefs, long‐term effects on the diversity and structure of fish assemblages remain unclear. Using a 23‐year time series spanning a thermal stress event, we describe and model structural changes and recovery trajectories of fish communities after mass bleaching. Communities changed fundamentally, with the new emergent communities dominated by herbivores and persisting for >15 years, a period exceeding realized and projected intervals between thermal stress events on coral reefs. Reefs which shifted to macroalgal states had the lowest species richness and highest compositional dissimilarity, whereas reefs where live coral recovered exceeded prebleaching fish richness, but remained dissimilar to prebleaching compositions. Given realized and projected frequencies of bleaching events, our results show that fish communities historically associated with coral reefs will not re‐establish, requiring substantial adaptation by managers and resource users.  相似文献   

18.
Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.  相似文献   

19.
A review of research on the effects of hurricanes on coral reefs suggests that the intermediate disturbance hypothesis may be applicable to shallow reef zones dominated by branching or foliaceous coral species that are especially susceptible to mechanical damage from storms. Diversity (H') increases because of an increase in evenness following destruction or removal of the species that was monopolizing the space. The intermediate disturbance hypothesis as presented by Connell focuses on changes in number of species, but should be expanded to include diversity (H') and evenness. It should also be modified to incorporate changes in living cover and the time elapsed since disturbances of varying intensities. This hypothesis predicts that when cover is high, diversity will be low. However, research on coral reefs does not consistently demonstrate an inverse correlation of coral diversity, and coral cover. An increase in cover and decrease in diversity with depth would also be expected because deeper reef zones generally experience less disturbance. However, higher diversity (both H' and species richness) is often associated with deeper zones. The effects of hurricanes on coral reefs will depend on the temporal and spatial scales under consideration, the life history characteristics and morphology of the dominant species, the depth of the reef zone, the ecological history of the site, and the influence of any additional natural or human stresses.  相似文献   

20.
Coral reefs, with their vast diversity of invertebrate, vertebrateand algal species, have undoubtedly been subjected to naturaldisturbance since their appearance millions of years ago. Anthropogenicdisturbance has been a factor affecting reefs for a fractionof that time, yet in terms of overall impact, may be of greaterconcern. Data on habitat destruction, pesticide and heavy metalaccumulation, nutrient loading, sedimentation, runoff and relatedimpacts of man's activities indicate that many coastal reefsare endangered by these processes through alterations in animal-algalsymbioses, shifts in competitive interactions, direct mortality,reproductive failure, and insufficient recruitment. The deathof corals critically affects reef communities, as corals providean important trophic link as well as the main habitat structure.While natural disturbance is an important factor affecting reefinteractions, species diversity and evolution, chronic anthropogenicdisturbances combined with unsuitable environments for recovery,are of great concern. Physiological stress can be measured incorals in addition to outright mortality, allowing the impactsof specific disturbances to be assessed. Sufficientdata fordistinguishing real problems from temporal variability are becomingavailable, allowing scientists to focus on practical solutionsto problems in coral reef management and preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号