首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Symbiotic seed germination of Pecteilis susannae (L.) Rafin was investigated using 11 fungal isolates recovered from roots of four Thai terrestrial orchids (P. susannae, Eulophia spectabilis, Paphiopedilum bellatulum and Spathoglottis affinis). Seed germination and protocorm development were evaluated up to 133 days after sowing. Protocorm development was most advanced, up to stage 5 (elongation of the first leaf), when seeds were cultured with 4 Epulorhiza isolates obtained from roots of P. susannae (CMU-Aug 028, 4.3%, CMU-Aug 007, 4.2%, and CMU-Aug 013, 2.2%) and E. spectabilis (CMU-STE 014, 3.9%). Moreover, stage 4 protocorm development (emergence of the first leaf) occurred with fungal isolates CMU-STE 011, 5.7%, (Epulorhiza sp.) and CMU-AU 212, 4.3%, (Tulasnella sp.) obtained from roots of E. spectabilis and S. affinis respectively. When seed was incubated without fungi (control), development was limited to stage 3 of protocorm development (appearance of promeristem). This is the first report of protocorm stage 5 development in P. susannae using compatible fungal symbionts. Optimization of seed germination and seedling fitness will assist the conservation and propagation of this orchid species and other terrestrial orchids in Thailand.  相似文献   

2.
腐生型兰科植物研究进展   总被引:1,自引:0,他引:1  
孙悦  李标  郭顺星 《广西植物》2017,37(2):191-203
腐生型兰科植物又称完全菌根异养型兰(Fully Mycoheterotrophic Orchids),无绿叶,不含叶绿素,不能进行光合作用制造有机物,完全依靠与其共生的真菌提供营养。近年来,腐生兰独特的生活方式引起了生物学家对其生理生态及进化问题的广泛关注,但目前仍缺乏系统深入的研究。为此,作者通过整理《中国植物志》和近年来报道的相关文献,发现分布在中国的腐生型兰科植物约有23属81种,主要集中在天麻属(Gastrodia)(24种)、鸟巢兰属(Neottia)(8种)、无叶兰属(Aphyllorchis)(6种)、山珊瑚属(Galeola)(5种)等。由于腐生兰特殊的营养需求,相比于其他营养类型的兰科植物,其菌根真菌有较大区别。腐生兰的菌根真菌主要有两大类,即外生菌根真菌(Ectomycorrhizal fungi,ECM)和非丝核菌类的腐生菌(Non-rhizoctonia SAP fungi)。该文还综述了腐生兰与其菌根真菌的专一性、营养来源以及系统进化等问题,提出了目前研究存在的问题,并对今后的研究工作进行了展望,以期为腐生兰的资源保护及再生研究提供参考。  相似文献   

3.
  • The Orchidaceae family presents one of the most extravagant pollination mechanisms: deception. While many studies on reproductive success have been performed on food‐deception orchids, less have been performed on sexually deceptive orchids. Here, we focused on Ophrys balearica P. Delforge, an endemic orchid of the Balearic Islands, to study its reproductive ecology, the spatio‐temporal variation of its reproductive success and the individual (floral display and geospatial position) and population parameters (patch size, shape and density) that affect its reproductive success.
  • We performed hand‐pollination experiments, along with the recording of floral display parameters and GPS position of over 1,100 individuals from seven populations in two consecutive years. We applied, for the first time, GIS tools to analyse the effects of individual’s position within the population on the reproductive success. Reproductive success was measured both in male (removed pollinia) and female (fruit set) fitness.
  • The results confirm that this species is pollinator‐dependent and mostly allogamous, but also self‐compatible. This species showed high values for the cumulative inbreeding depression index and high pollen limitation. Male fitness was almost equal to female fitness between years and populations, and reproductive success exhibited huge spatio‐temporal variation.
  • Although we did not find strong correlations between floral display and reproductive success, patches with low‐plant density and individuals in the external portion of the population showed significantly higher plant fitness. These findings must be considered in conservation actions for endangered orchid species, especially considering that most orchids are strongly dependent on pollinators for their species’ fitness.
  相似文献   

4.
Mycorrhizal association is a common characteristic in a majority of land plants, and the survival and distribution of a species can depend on the distribution of suitable fungi in its habitat. Orchidaceae is one of the most species‐rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and some also for subsequent growth and survival. Given this obligate dependence, at least in the early growth stages, elucidating the patterns of orchid–mycorrhizal relationships is critical to orchid biology, ecology and conservation. To assess whether rarity of an orchid is determined by its specificity towards its fungal hosts, we studied the spatial and temporal variability in the host fungi associated with one of the rarest North American terrestrial orchids, Piperia yadonii. The fungal internal transcribed spacer region was amplified and sequenced by sampling roots from eight populations of P. yadonii distributed across two habitats, Pinus radiata forest and maritime chaparral, in California. Across populations and sampling years, 26 operational taxonomic units representing three fungal families, the Ceratobasidiaceae, Sebacinaceae and Tulasnellaceae, were identified. Fungi belonging to the Sebacinaceae were documented in orchid roots only at P. radiata forest sites, while those from the Ceratobasidiaceae and Tulasnellaceae occurred in both habitats. Our results indicate that orchid rarity can be unrelated to the breadth of mycorrhizal associations. Our data also show that the dominance of various fungal families in mycorrhizal plants can be influenced by habitat preferences of mycorrhizal partners.  相似文献   

5.
The geographical distribution, population structure and pollination ecology are key aspects in the conservation and management of rare orchids. Here, we address these aspects and the main threats affecting the endangered Cuban orchid Broughtonia cubensis. This rewardless orchid is self‐compatible, but pollinator dependent. However, seed production can be negatively affected by insect‐mediated selfing. Three species of small bee (genera Ceratina and Lasioglossum) act as pollinators. As in the case of other nectarless orchids, we detected two species of plant producing large amounts of nectar in the area, the floral morphology of which closely resembles that of B. cubensis. The simultaneous flowering of these species could positively affect the reproductive success of B. cubensis. Nonetheless, the fitness of this orchid in natural conditions is low, possibly related to strong pollen limitation. To the problems arising from reduced fitness is added the fact that its historical distribution range has been greatly reduced in recent years. Throughout this study, we have detected dramatic reductions in the population sizes, in some cases as a result of human plundering, but also as a consequence of hurricanes. Based on the results of this study, we propose some guidelines to manage and conserve this orchid. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 345–357.  相似文献   

6.
Eight endophytic fungi were isolated from roots of the threatened terrestrial orchid, Pecteilis susannae (L.) Rafin. Phylogenetic analysis based on an alignment of internal transcribed spacer regions of nuclear rDNA indicated that seven isolates belonged to the genus Epulorhiza and one to Fusarium. All fungal isolates were cultured with orchid seeds collected from three field sites near Doi Suthep-Pui National Park, Chiang Mai, Thailand. Seed germination and protocorm development were evaluated up to 70 days after sowing. Percent symbiotic seed germination was highest (86.2%) when seeds were cultured with Epulorhiza (CMU-Aug 013). The protocorm development was the most advanced up to stage 2, continued embryo enlargement, or rupture of the testa, and the highest percentage was 17.8% when seeds were cultured with Epulorhiza (CMU-Aug 007). Without fungi, seed germination and protocorm development were 62.1% and 11.1%, respectively. The dependency of P. susannae on fungal symbionts for early seedling development is yet to be determined. Optimizing seed germination and seedling fitness will assist the conservation of this threatened orchid in Thailand.  相似文献   

7.
Plant species dependent on highly specific interactions with pollinators are vulnerable to environmental change. Conservation strategies therefore require a detailed understanding of pollination ecology. This two-year study examined the interactions between the sexually deceptive orchid, Orchis galilaea, and its pollinator Lasioglossum marginatum. Relationships were investigated across three different habitats known to support O. galilaea (garrigue, oak woodland, and mixed oak/pine woodland) in Lebanon. Visitation rates to flowers were extremely low and restricted to male bees. The reproductive success of O. galilaea under ambient conditions was 29.3% (±2.4), compared to 89.0% (±2.1) in plants receiving cross-pollination by hand. No difference in reproductive success was found between habitat types, but values of reproductive success were positively correlated to the abundance of male bees. Pollination limitation can have negative impacts on the population growth of orchids, and this study provides clear evidence for more holistic approaches to habitat conservation to support specific interactions.  相似文献   

8.
Platystele misera (Lindl.) Garay is illustrated as the first of two species of Platystele Schltr., a genus of tiny Pleurothallid orchids from South and Central America. The ecology and distribution of Platystele are discussed, accompanied by brief notes on the cultivation of this species.  相似文献   

9.
Terrestrial orchid germination, growth and development are closely linked to the establishment and maintenance of a relationship with a mycorrhizal fungus. Mycorrhizal dependency and specificity varies considerably between orchid taxa but the degree to which this underpins rarity in orchids is unknown. In the context of examining orchid rarity, large scale in vitro and in situ germination trials complemented by DNA sequencing were used to investigate ecological specialization in the mycorrhizal interaction of the rare terrestrial orchid Caladenia huegelii. Common and widespread sympatric orchid congeners were used for comparative purposes. Germination trials revealed an absolute requirement for mycorrhisation with compatibility barriers to germination limiting C. huegelii to a highly specific and range limited, efficacious mycorrhizal fungus. DNA sequencing confirmed fidelity between orchid and fungus across the distribution range of C. huegelii and at key life history stages within its life cycle. It was also revealed that common congeners could swap or share fungal partners including the fungus associated with the rare orchid but not vice versa. Data from this study provides evidence for orchid rarity as a cause and consequence of high mycorrhizal specialization. This interaction must be taken into account in efforts to mitigate the significant extinction risk for this species from anthropogenically induced habitat change and illustrates the importance of understanding fungal specificity in orchid ecology and conservation.  相似文献   

10.
Orchids (Orchidaceae) are a family of flowering plants with a high proportion of threatened taxa making them an important focus of plant conservation. Orchid conservation efforts are most effective when informed by reliable demographic research. We utilized transition matrix models to examine the population dynamics and demography within sympatric populations of a species pair of terrestrial round-leaved orchids, Platanthera macrophylla and P. orbiculata. The models were parameterized from a large data set spanning 9 years from field observations of over 1,000 orchids. Life table response experiments (LTRE) were used to identify which life history transitions, and which vital rates within those transitions, most contributed to observed differences between the two species and most contributed to interannual variation within each species. Results from mean transition matrices projected finite rates of population growth that were not significantly different between the two species, with P. macrophylla near the replacement rate and P. orbiculata below it. LTRE revealed that the difference in population growth rates between the two species was mostly due to differences in fecundity (flowering adult to protocorm transition) driven by differences in fruit set and seed germination into protocorm, which were much greater for P. macrophylla. The two primary contributors to interannual variation in population growth rates for both orchids were adult survival and fruit set, respectively. These findings indicate that any environmental disturbances harming adult survival or fecundity will have a disproportionately negative effect on the orchid populations.  相似文献   

11.
Orchids are known for their species richness, intriguing ecology, rarity and the fact that they grow in almost all terrestrial ecosystems. Although numerous studies about their ecology have been carried out concerning calcareous areas, little is known about orchids that occur in serpentine habitats. The aim of this study was to investigate the ecological preferences of orchids in serpentine and non-serpentine areas on the model of the Valjevo Mountain Range (W Serbia). Niche analysis of orchids was performed using outlying mean index analysis. Data concerning geographical coordinates, altitude, habitat type, inclination, bedrock type, light regime, soil moisture, acidity, nitrogen and temperature were used as explanatory variables. Data of 33 orchid taxa from 407 localities were analysed. The most important gradients that govern orchid distribution were geological bedrock, light regime and temperature. The results have shown that only Anacamptis morio and Gymnadenia conopsea have statistically significantly larger populations on serpentine compared with non-serpentine bedrocks. This study highlights the importance of serpentine habitats as orchid habitats, bearing in mind the occurrence of rare species and species which were found exclusively in serpentine habitats.  相似文献   

12.
This work describes and illustrates a new species of orchid, Sacoila cerradicola. Its differences from other Sacoila species from Brazil are demonstrated, and notes about its habitat, ecology, conservation status and suggestions for its cultivation are provided.  相似文献   

13.
China has over 1,200 species of native orchids in nearly 173 genera. About one fourth of native species are of horticultural merit. Some species are of Chinese medicinal value. In fact, the demand on orchid species with high Chinese medicinal values such as Gastrodia elata, Dendrobium offcinale, along with demands on species of cultural importance, such as those in the genus of Cymbidium, is a major factor causing wild populations to diminish and in some cases, drive wild populations to the brink of extinction. These market demands have also driven studies on the role of mycorrhizal fungi in orchid seed germination, seedling and adult growth, and reproduction. Most of these mycorrhizal studies of Chinese orchids, however, are published in Chinese, some in medical journals, and thus overlooked by the mainstream orchid mycorrhizal publications. Yet some of these studies contained interesting discoveries on the nature of the mycorrhizal relationships between orchids and fungi. We present a review of some of these neglected publications. The most important discovery comes from the mycorrhizal studies on G. elata, in which the researchers concluded that those fungi species required to stimulate seed germination are different from those that facilitate the growth of G. elata beyond seedling stages. In addition, presence of the mycorrhizal fungi associated with vegetative growth of post-seedling G. elata hindered the germination of seeds. These phenomena were unreported prior to these studies. Furthermore, orchid mycorrhizal studies in China differ from the mainstream orchid studies in that many epiphytic species (in the genus of Dendrobium, as medicinal herbs) were investigated as well as terrestrial orchids (mostly in the genus Cymbidium, as traditional horticultural species). The different responses between epiphytic and terrestrial orchid seeds to fungi derived from roots suggest that epiphytic orchids may have a more general mycorrhizal relationship with fungi than do terrestrial orchid species during the seed germination stage. To date, orchid mycorrhizal research in China has had a strongly commercial purpose. We suggest that this continuing research on orchid mycorrhizal relationships are a solid foundation for further research that includes more rare and endangered taxa, and more in-situ studies to assist conservation and restoration of the endangered orchids. Knowledge on the identities and roles of mycorrhizal fungi of orchids holds one of the keys to successful restoration and sustainable use of Chinese orchids.  相似文献   

14.
  • The future impact of climate change and a warmer world is a matter of great concern. We therefore aimed to evaluate the effects of temperature on pollen viability and fruit set of Mediterranean orchids.
  • The in vitro and controlled pollination experiments were performed to evaluate the ability of pollinia stored at lower and higher temperatures to germinate and produce fruits and seeds containing viable embryos.
  • In all of the examined orchids, pollen stored at ?20 °C remained fully viable for up to 3 years, reducing its percentage germination from year 4 onwards. Pollinia stored at higher temperatures had a drastic reduction in vitality after 2 days at 41–44 °C, while pollinia stored at 47–50 °C did not show any pollen tube growth.
  • The different levels of pollen viability duration among the examined orchids can be related to their peculiar reproductive biology and pollination ecology. The germinability of pollinia stored at lower temperatures for long periods suggests that orchid pollinia can be conserved ex situ. In contrast, higher temperatures can have harmful effects on the vitality of pollen and consequently on reproductive success of the plants. To our knowledge, this is the first report demonstrating the effects of global change on orchid pollen, and on pollen ability to tolerate, or not, higher air temperatures. Although vegetative reproduction allows orchids to survive a few consecutive warm years, higher temperatures for several consecutive years can have dramatic effects on reproductive success of orchids.
  相似文献   

15.
Terrestrial orchid conservation in the age of extinction   总被引:1,自引:0,他引:1  

Background

Conservation through reserves alone is now considered unlikely to achieve protection of plant species necessary to mitigate direct losses of habitat and the pervasive impact of global climate change. Assisted translocation/migration represent new challenges in the face of climate change; species, particularly orchids, will need artificial assistance to migrate from hostile environments, across ecological barriers (alienated lands such as farmlands and built infrastructure) to new climatically buffered sites. The technology and science to underpin assisted migration concepts are in their infancy for plants in general, and orchids, with their high degree of rarity, represent a particularly challenging group for which these principles need to be developed. It is likely that orchids, more than any other plant family, will be in the front-line of species to suffer large-scale extinction events as a result of climate change.

Scope

The South West Australian Floristic Region (SWAFR) is the only global biodiversity hotspot in Australia and represents an ideal test-bed for development of orchid conservation principles. Orchids comprise 6 % of all threatened vascular plants in the SWAFR, with 76 out of the 407 species known for the region having a high level of conservation risk. The situation in the SWAFR is a portent of the global crisis in terrestrial orchid conservation, and it is a region where innovative conservation solutions will be required if the impending wave of extinction is to be averted. Major threatening processes are varied, and include land clearance, salinity, burning, weed encroachment, disease and pests. This is compounded by highly specialized pollinators (locally endemic native invertebrates) and, in the most threatened groups such as hammer orchids (Drakaea) and spider orchids (Caladenia), high levels of mycorrhizal specialization. Management and development of effective conservation strategies for SWAFR orchids require a wide range of integrated scientific approaches to mitigate impacts that directly influence ecological traits critical for survival.

Conclusions

In response to threats to orchid species, integrated conservation approaches have been adopted (including ex situ and translocation principles) in the SWAFR with the result that a significant, multidisciplinary approach is under development to facilitate conservation of some of the most threatened taxa and build expertise to carry out assisted migration to new sites. Here the past two decades of orchid conservation research in the SWAFR and the role of research-based approaches for managing effective orchid conservation in a global biodiversity hotspot are reviewed.Key words: Orchids, pollination, mycorrhiza, integrated conservation, terrestrial, threats, ex situ conservation, in situ conservation  相似文献   

16.
中国兰科植物保育的现状和展望   总被引:75,自引:0,他引:75  
兰科植物是植物保育中的“旗舰”类群 (flaggroup)。中国不是兰科植物种类最丰富的地区 ,但具有最复杂多样的地理分布类型以及众多的原始类群 ,因此 ,开展对中国兰科植物的研究和保育是世界兰科植物研究和保育工作中的重要组成部分。本文介绍了目前中国兰科植物研究和保育的现状 ,分析了与国际同类工作相比存在的差距 ,并对今后的发展方向提出了一些看法  相似文献   

17.
About a quarter of Chinese wild orchid species are used in traditional medicine or as health food supplements. The market demand for some species, such as those in the epiphytic genus Dendrobium, has diminished many wild populations to local extinction or dangerously small numbers. Conservation of these heavily exploited orchids currently relies on a two-pronged approach: establishing nature reserves and encouraging massive commercial cultivation in artificial settings. We argue that these measures are not sufficient to restore or maintain healthy wild populations, and augmentation and reintroduction of these species in natural forests are needed. We argue for an unconventional reintroduction approach, in which populations planted in natural forests are allowed to be sustainably harvested (restoration-friendly cultivation). Because Dendrobium orchids are epiphytic, restoration-friendly cultivation of these species will not be at the expenses of other native plants. In addition, market premiums on wild-collected medicinal plants will generate incentives for farmers who participate in restoration-friendly cultivation to preserve natural forests. With proper policy and oversight, the restoration-friendly cultivation of medicinal Dendrobium orchids will facilitate the conservation of these threatened species, encourage protection of natural forests, and benefit marginalized rural communities. Adding this restoration-friendly cultivation into the current mix of conservation approaches has the potential to turn deeply-entrenched traditional uses of orchids from a conservation challenge to a conservation success.  相似文献   

18.
19.
Fritillaria kiusiana L. Hill, a new species from the Kyushu Central Mountains in Japan, is illustrated and described. Its ecology, genetics and conservation are discussed and instructions for its cultivation are given.  相似文献   

20.
Understanding the processes that determine the architecture of interaction networks represents a major challenge in ecology and evolutionary biology. One of the most important interactions involving plants is the interaction between plants and mycorrhizal fungi. While there is a mounting body of research that has studied the architecture of plant–fungus interaction networks, less is known about the potential factors that drive network architecture. In this study, we described the architecture of the network of interactions between mycorrhizal fungi and 44 orchid species that represented different life forms and co‐occurred in tropical forest and assessed the relative importance of ecological, evolutionary and co‐evolutionary mechanisms determining network architecture. We found 87 different fungal operational taxonomic units (OTUs), most of which were members of the Tulasnellaceae. Most orchid species associated with multiple fungi simultaneously, indicating that extreme host selectivity was rare. However, an increasing specificity towards Tulasnellaceae fungal associates from terrestrial to epiphytic and lithophytic orchids was observed. The network of interactions showed an association pattern that was significantly modular (M = 0.7389, Mrandom = 0.6998) and nested (NODF = 5.53, p < 0.05). Terrestrial orchids had almost no links to modules containing epiphytic or lithophytic orchids, while modules containing epiphytic orchids also contained lithophytic orchids. Within each life form several modules were observed, suggesting that the processes that organize orchid–fungus interactions are independent of life form. The overall phylogenetic signal for both partners in the interaction network was very weak. Overall, these results indicate that tropical orchids associate with a wide number of mycorrhizal fungi and that ecological rather than phylogenetic constraints determine network architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号