首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
研究通过高通量测序和荧光定量PCR等分子生物学分析方法, 以氨单加氧酶基因(amoA)为分子标记, 研究了东湖表层沉积物中AOA和AOB的群落多样性、丰度及其与环境因子的关系。结果表明, 东湖沉积物AOA主要为Nitrosopumilus, 其群落结构与沉积物中总氮含量显著相关, 而AOB主要为Nitrosomonas, 群落结构与沉积物中总有机碳和总磷显著相关。此外, 不同季节AOA丰度均高于AOB, 且沉积物AOA数量与温度呈显著负相关, 但AOB丰度变化不明显。东湖沉积物中AOA可能主导了氨氧化过程。  相似文献   

2.
利用荧光定量PCR、末端限制性片段长度多样性(T-RFLP)和基因克隆文库技术,比较了4种施氮水平(不施氮肥,0 kg N/hm~2,CK;施低水平氮肥,75 kg N/hm~2,N1;施中水平氮肥,150 kg N/hm~2,N2;施高水平氮肥,225 kg N/hm~2,N3)下华北平原地区小麦季表层(0—20 cm)土壤总细菌、氨氧化细菌(AOB)和氨氧化古菌(AOA)的丰度和群落结构。结果表明,土壤总细菌、AOB和AOA数量分别在每克干土5.74×10~9—7.50×10~9、8.89×10~6—2.66×10~7和3.83×10~8—7.78×10~8之间。不同施氮量土壤AOA数量均高于AOB数量,AOA/AOB值在81.72—14.38之间。增施氮肥显著显著提高AOB数量(P0.05),对总细菌和AOA数量的影响不显著(P0.05)。与CK相比,处理N1、N2和N3中AOB数量分别提高了0.64、1.50和1.99倍。增施氮肥显著改变了AOB和AOA的群落结构,且不同施氮量处理中AOB群落结构差异更大。系统进化分析显示,施氮肥小麦土壤AOB主要为Nitrosospira属类群,分布在Cluster 3的两个分支中;AOA分布在Cluster S的4个分支中。相关性分析显示,AOB数量与全氮和铵态氮含量呈显著正相关关系,与土壤pH和碳氮比呈显著负相关关系(P0.05);AOA数量与硝态氮含量和土壤pH呈显著正相关关系,与铵态氮含量呈显著负相关关系(P0.05)。研究结果表明:增施氮肥可显著改变华北平原地区碱性土壤AOB数量与群落结构,该地区小麦土壤中AOB比AOA对氮肥响应更敏感。  相似文献   

3.
【目的】本研究皆在了解虾养殖底泥中氨氧化细菌与氨氧化古菌群落多态性。【方法】以功能基因为基础,构建氨氧化细菌(AOB)与氨氧化古菌(AOA)的氨单加氧酶α亚基基因(amoA)克隆文库。利用限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP)技术将克隆文库阳性克隆子进行归类分析分成若干个可操作分类单元(Operational Taxa Units,OTUs)。【结果】通过序列多态性分析,表明AOB amoA基因克隆文库中所有序列都属于变形杆菌门β亚纲(β-Proteobacteria)中的亚硝化单细胞菌属(Nitrosomonas)及Nitrosomonas-like,未发现亚硝化螺旋菌属(Nitrosospira)。AOA amoA基因克隆文库中只有一个OTU序列属于未分类的古菌(Unclassified-Archaea),其余序列都属于泉古菌门(Crenarchaeote)。AOA群落结构单一且存在一个绝对优势类群OTU3,其克隆子数目占克隆文库的57.45%。AOB和AOA amoA基因克隆文库分别包括13个OTUs和9个OTUs,其文库覆盖率分别为73.47%和90.43%。AOB amoA基因克隆文库的Shannon-Wiener指数、Evenness指数、Simpson指数、Richness指数均高于AOA。【结论】虾养殖塘底泥中存在氨氧化古菌的amoA基因,且多态性低于氨氧化细菌,表明氨氧化古菌在虾养殖塘底泥的氮循环中可能具有重要的作用。  相似文献   

4.
由氨氧化微生物驱动的氨氧化过程是硝化作用的限速步骤,在土壤氮素循环过程中扮演着重要角色.以湖南省宁乡县长达30 a定位试验水稻土壤为研究对象,采用荧光定量PCR和Illumina MiSeq高通量测序分析方法,以amoA基因为靶标,研究了4种施肥制度[不施肥(CK)、化肥(CF)、70%化肥+30%有机肥(CFM1)和40%化肥+60%有机肥(CFM2)]水稻土壤氨氧化微生物的数量和群落结构变化.结果表明: 不同施肥处理氨氧化古菌(AOA)和氨氧化细菌(AOB) amoA基因拷贝数分别为3.09×107~8.37×107和1.04×107~7.03×107 copies·g-1干土.施肥显著提高了AOA和AOB数量,但处理CFM2中AOB数量与CK差异不显著.有机肥配施比例对AOB群落α多样性指数的影响强于AOA,处理CFM1中AOA群落的多样性指数(Shannon)和AOB群落的丰富度指数(ACE和Chao1)均显著高于CK.奇古菌门和泉古菌门是AOA群落的优势门类群,占AOA amoA基因总序列的83.4%;亚硝化螺菌属、environmental_samples_norank、Bacteria_unclassified和Nitrosomonadales_unclassified是AOB群落的优势属类群,占AOB amoA基因总序列的97.8%.维恩分析结果显示,有机肥配施比例对AOB群落操作分类单元(OTU)数量的影响强于AOA,但对各处理共有AOA和AOB amoA基因序列条数的影响均较小.冗余分析结果显示,不同施肥处理AOB群落结构差异强于AOA,且所有土壤理化性质均与AOA和AOB群落结构存在显著相关关系.综上可知:有机肥配施比例显著改变了AOA和AOB数量、多样性和群落结构,配施30%有机肥时,AOA群落的Shannon指数最高,AOB群落数量、ACE和Chao1指数均最高.研究结果可为进一步探讨农业系统中氨氧化微生物对不同施肥制度的响应机制及其在氮素转化中的作用提供科学依据.  相似文献   

5.
王奥  吴福忠  何振华  徐振锋  刘洋  谭波  杨万勤 《生态学报》2012,32(14):4371-4378
为了解季节性冻融作用对川西亚高山/高山地区土壤氨氧化微生物群落的影响,采用qPCR技术,以氨单加氧酶基因的α亚基(amoA)为标记,在生长阶段、冻结阶段、融化阶段中的9个关键时期调查了该地区不同森林群落:岷江冷杉(Abies faxoniana)原始林(PF)、岷江冷杉(A. faxoniana)和红桦(Betula albosinensis)混交林(MF)、岷江冷杉次生林(SF)土壤有机层的氨氧化细菌(ammonia-oxidizing bacteria, AOB)和氨氧化古菌(ammonia-oxidizing archaea, AOA)丰度的特征。结果表明,三个森林群落土壤有机层中都具有相当数量的氨氧化细菌和古菌,均表现出从生长阶段至冻结阶段显著降低,在冻结阶段最低,但冻结阶段后显著增加,在融化阶段为全年最高的趋势。土壤氨氧化微生物类群结构(AOA/AOB)受负积温影响明显。冻结后期三个森林群落土壤负积温最大时,AOA数量明显高于AOB,但其他关键时期土壤氨氧化微生物类群结构与群落类型密切相关。高海拔的PF群落土壤有机层表现为AOA>AOB(冻结初期除外),低海拔的SF群落中表现为AOB>AOA(冻结后期除外),而MF群落则仅在融冻期和生长季节末期表现为AOB>AOA。这些结果为认识亚高山/高山森林及其相似区域的生态过程提供了一定的科学依据。  相似文献   

6.
【目的】以内蒙古辉腾锡勒草原九十九泉湿地为对象,研究湖泊干涸过程中氨氧化微生物的群落结构及其变化。【方法】通过MPN-PCR定量测定氨氧化古菌(AOA)和氨氧化细菌(AOB)的数量;构建amoA基因克隆文库,进行系统发育分析;结合土壤环境因子,探讨湿地退化过程中影响氨氧化微生物的潜在因素。【结果】依湖泊湿地退水梯度的不同样点中,有75%的样点AOB的数量高于AOA,AOB与AOA的数量比率为0.3-18.1。从湖心到湖岸草原带,AOA和AOB的数量有明显增加,但生物多样性呈降低趋势,二者没有呈现正相关。研究发现,AOB的数量与土壤中NH 4+-N的变化存在良好响应。系统发育分析显示,退化湖泊湿地AOA克隆序列均来自于泉古菌门(Crenarchaeota);AOB的amoA基因的克隆序列大部分与亚硝化单胞菌属(Nitrosomonas)有一定同源性,较少部分与亚硝化螺菌属(Nitrosospira)有一定同源性。【结论】湖泊退水过程增加了湿地土壤氨氧化微生物的数量,而氨氧化微生物的种群丰度有所降低。AOA和AOB群落对湖泊湿地的退化过程做出了响应,其中AOB的响应较为明显,氧化条件和土壤铵浓度的改变可能是促成这种响应的重要原因。  相似文献   

7.
亚热带不同林分土壤氨氧化菌群落特征   总被引:2,自引:0,他引:2  
为揭示亚热带不同森林类型对土壤氨氧化菌群落特征的影响,采用荧光定量PCR以及PCR-DGGE技术研究了阔叶林、杉木林、马尾松林和毛竹林土壤氨氧化古菌和细菌丰度及古菌群落结构特征.结果表明:不同林分土壤中氨氧化古菌数量(1.62×106~1.88×107个·g-1干土)高于相应土壤中的氨氧化细菌(2.41×105~4.36×105个·g-1干土);毛竹林土壤氨氧化古菌数量显著高于杉木林,而后者又显著高于阔叶林和马尾松林,但氨氧化细菌数量在不同林分之间没有显著差异.DGGE图谱分析表明,不同林分土壤中氨氧化古菌的物种有所差异,且毛竹林和杉木林土壤古菌群落结构迥异.氨氧化古菌在亚热带主要林分土壤中表现出明显优势,且除植被类型外,土壤速效钾、pH和有机质是引起土壤氨氧化古菌群落结构及多样性变异的主要因素.  相似文献   

8.
氨氧化古菌的生态学研究进展   总被引:6,自引:0,他引:6  
上百年来细菌一直被认为是地球氨氧化过程的主要驱动者,2005年海洋中分离到迄今唯一的非极端环境泉古菌,发现其氧化氨态氮获得能源生长,是氨氧化古菌。氨氧化古菌和细菌对地球氨氧化过程的相对贡献率,是目前全球氮循环研究最重要的微生物生态学问题之一。已有的证据表明古菌在海洋氨氧化过程中发挥了重要作用,细菌则是土壤氨氧化过程的主要驱动者。本文重点探讨了原位自然环境下氨氧化古菌的生态学研究进展。  相似文献   

9.
氨氧化是硝化作用的限速步骤,也是评估土壤氮循环和提高氮肥利用效率的重要指标。以内蒙古农牧业科学院旱作实验站长期定位实验为基础,通过实时荧光定量PCR和末端限制性片段长度多态性分析,研究了5种施肥方式(单施氮肥、单施有机肥、氮磷钾配施、有机无机配施和不施肥)对土壤氨氧化古菌(AOA)和氨氧化细菌(AOB)群落丰度、结构和活性的影响。结果表明:单施氮肥、氮磷钾肥配施以及有机无机肥配施均能显著提高AOB的丰度以及土壤硝化潜势。Nitrosospiria cluster 3a.1是不施肥土壤中主要的AOB种群,而施用氮肥后优势种群转变为Nitrosospiria cluster 3a.2。Nitrosospiria cluster 3b的比例在施用有机肥处理土壤中显著升高。在干旱半干旱地区,土壤pH和含水量是解释AOB群落结构变化的关键环境因子。AOA的丰度在单独施用氮肥处理中显著升高,但不同施肥方式对AOA的群落结构没有显著影响。  相似文献   

10.
河口生态系统氨氧化菌生态学研究进展   总被引:1,自引:0,他引:1  
由amoA基因编码的氨单加氧酶(AMO)所调控的氨氧化作用,是硝化作用的限速步骤和中心环节,而含有amoA基因的氨氧化细菌(AOB)和氨氧化古菌(AOA)多样性与环境因子关系密切,对缓解河口生态系统因人类活动造成的富营养化等环境问题具有特别重要的意义。水、陆和海交汇形成高度变异的具环境因子梯度的河口生态系统,是研究AOA和AOB生态学的天然实验室。河口AOA与AOB的群落组成、丰富度特征和生物有效性,与河口主要环境因子盐度、富营养化程度、植被、温度、碳、氮、硫、铁等,尤其是对盐度和富营养化有着较为强烈的响应。AOA和AOB多样性变化规律及其与河口特有的环境因子之间的相关性,应当是今后我国河口氨氧化菌研究的方向和重点。包括:(1)建立有效的氨氧化菌活性评价方法;(2)研究AOA的同化作用方式;(3)依据氨氧化菌分类和组成对河口环境变化的适应进化机制,建议可作为指示河口环境质量变化的生物标记;(4)将传统的分离培养方法与现代分子生物学研究方法相结合,筛选我国河口高效的氨氧化菌,并将其应用于生产。  相似文献   

11.
12.
13.
14.
Autotrophic ammonia-oxidizing bacteria were considered to be responsible for the majority of ammonia oxidation in soil until the recent discovery of the autotrophic ammonia-oxidizing archaea. To assess the relative contributions of bacterial and archaeal ammonia oxidizers to soil ammonia oxidation, their growth was analysed during active nitrification in soil microcosms incubated for 30 days at 30 °C, and the effect of an inhibitor of ammonia oxidation (acetylene) on their growth and soil nitrification kinetics was determined. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial ammonia oxidizer 16S rRNA genes did not detect any change in their community composition during incubation, and quantitative PCR (qPCR) analysis of bacterial amoA genes indicated a small decrease in abundance in control and acetylene-containing microcosms. DGGE fingerprints of archaeal amoA and 16S rRNA genes demonstrated changes in the relative abundance of specific crenarchaeal phylotypes during active nitrification. Growth was also indicated by increases in crenarchaeal amoA gene copy number, determined by qPCR. In microcosms containing acetylene, nitrification and growth of the crenarchaeal phylotypes were suppressed, suggesting that these crenarchaea are ammonia oxidizers. Growth of only archaeal but not bacterial ammonia oxidizers occurred in microcosms with active nitrification, indicating that ammonia oxidation was mostly due to archaea in the conditions of the present study.  相似文献   

15.
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.  相似文献   

16.
It is well known that the ratio of ammonia-oxidizing archaea (AOA) and bacteria (AOB) ranges widely in soils, but no data exist on what might influence this ratio, its dynamism, or how changes in relative abundance influences the potential contributions of AOA and AOB to soil nitrification. By sampling intensively from cropped-to-fallowed and fallowed-to-cropped phases of a 2-year wheat/fallow cycle, and adjacent uncultivated long-term fallowed land over a 15-month period in 2010 and 2011, evidence was obtained for seasonal and cropping phase effects on the soil nitrification potential (NP), and on the relative contributions of AOA and AOB to the NP that recovers after acetylene inactivation in the presence and absence of bacterial protein synthesis inhibitors. AOB community composition changed significantly (P⩽0.0001) in response to cropping phase, and there were both seasonal and cropping phase effects on the amoA gene copy numbers of AOA and AOB. Our study showed that the AOA:AOB shifts were generated by a combination of different phenomena: an increase in AOA amoA abundance in unfertilized treatments, compared with their AOA counterparts in the N-fertilized treatment; a larger population of AOB under the N-fertilized treatment compared with the AOB community under unfertilized treatments; and better overall persistence of AOA than AOB in the unfertilized treatments. These data illustrate the complexity of the factors that likely influence the relative contributions of AOA and AOB to nitrification under the various combinations of soil conditions and NH4+-availability that exist in the field.  相似文献   

17.
内蒙古呼伦贝尔草原土壤氨氧化细菌多样性及群落结构   总被引:3,自引:0,他引:3  
Wendu RL  Li G  Yang DL  Zhang JN  Yi J 《应用生态学报》2011,22(4):929-935
采用聚合酶链式反应-变性梯度凝胶电泳技术及扩增产物序列分析方法,研究了呼伦贝尔5种草地类型(线叶菊草原、贝加尔针茅草原、羊草草原、大针茅草原、克氏针茅草原)土壤氨氧化细菌多样性及群落结构特征.研究表明:不同草地类型间土壤氨氧化细菌群落结构组成差异显著,相似性均低于50%.线叶菊草原土壤氨氧化细菌群落多样性最高,其次是贝加尔针茅草原、羊草草原和克氏针茅草原,大针茅草原最低.5种草地类型土壤氨氧化细菌均以Nitrosospira cluster 3为优势种群,此外还发现有Nitrosospira cluster 1、2、4和Nitrosomonas.线叶菊草原土壤氨氧化细菌群落组成较其他草地类型复杂,而羊草草原和大针茅草原群落组成较简单.经相关性分析,土壤含水量、土壤全氮、有机碳、土壤C/N与土壤氨氧化细菌群落多样性显著正相关(P<0.05).  相似文献   

18.
Ongoing climate change, characterized by winter warming, snow cover decline and extreme weather events, is changing terrestrial ecosystem processes in high altitude and latitude regions. Winter soil processes could be particularly sensitive to climate change. In fact, winter warming and snow cover decline are interdependent in cold biomes, and have a synergistic effect on soil processes. Soil microorganisms not only play crucial roles in material cycling and energy flow, but also act as sensitive bio-indicators of climate change. However, little information is available on the effect of winter warming on forest soil ammonia-oxidizing bacteria (AOB) and archaea (AOA). The alpine and subalpine forest ecosystems on the eastern Tibet Plateau have important roles in conserving soil, holding water, and maintaining biodiversity. To understand the changes in AOB and AOA communities under climate change scenarios, an altitudinal gradient experiment in combination with soil column transplanting was conducted at the Long-term Research Station of Alpine Forest Ecosystems, which is situated in the Bipeng Valley of Lixian County, Sichuan, China. Thirty intact soil columns under an alpine forest at an altitude of 3582 m were transplanted and incubated at 3298 m and 3023 m forest sites, respectively. Compared with the 3582 m, we expected air temperature increases of 2 °C and 4 °C at the 3298 m and 3023 m, respectively. However, the temperatures in the soil organic layer (OL) and mineral soil layer (ML) increased by 0.27 °C and 0.13 °C, respectively, at 3023 m and ? 0.36 °C and ? 0.35 °C at 3298 m. Based on a previous study and with simultaneous monitoring of soil temperature, the abundances of AOB and AOA communities in both the OL and ML were measured by qPCR in December 2010 (i.e., the onset of the frozen soil period) and March 2011 (i.e., the late frozen soil period). The soil columns incubated at 3023 m had relatively higher AOB abundances and lower AOA/AOB ratios than those at 3298 m, while higher AOA abundances and AOA/AOB ratios were observed at 3298 m. The abundance of the microbial community at the late frozen period was higher than that at the onset of frozen soil, and the changes in microbial community abundance at the late frozen period were more substantial. Furthermore, the nitrate nitrogen (N) concentrations in both the OL and ML were significantly higher than ammonia N concentrations, implying that soil nitrate N is the primary component of the inorganic N pool in the alpine forest ecosystem. Additionally, the responses of AOA and AOB in the soil OL to soil column transplanting were more sensitive than the responses of those in ML. In conclusion, climate warming alters the abundance of the ammonia-oxidizing microbial community in the alpine forest ecosystem, which, in turn, might affect N cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号