首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we present results of a Drosophila long term experiment where we study the fitness consequences of equating the number of breeding offspring contributed per family (EC) compared to a random contribution (RC) protocol. The EC strategy slows inbreeding and drift. However, it also prevents natural selection on fecundity and limits selection on viability to that occurring within families, and this includes purge against unconditionally deleterious alleles as well as adaptation to captive conditions. We used populations maintained with 5 or 25 single mated pairs, monitored inbreeding and selection intensity, and assayed competitive and non competitive fitness, as well as fecundity and viability components, in lines maintained with or without EC. In the small lines, EC showed modest advantage for viability during the whole experiment and for fitness up to generation 15 while, in the large lines, fitness increased steadily under both strategies, and EC led in the medium term to a slight fitness disadvantage. On the light of recent theory, these results can be explained as the joint consequence of new and standing deleterious mutations undergoing drift, inbreeding and selection and of adaptation to captive conditions.  相似文献   

2.
Fragmented populations may face high risk of extinction due to the deleterious consequences of increased inbreeding or of genetic drift in small and isolated populations. Theories on the mechanisms of inbreeding depression predict that the severity of inbreeding depression can eventually decrease in populations that persistently inbreed, and hence populations that are isolated through habitat fragmentation might experience a decrease in inbreeding depression over time. In this study, we tested this hypothesis using the patchily distributed, outcrossing annual plant, Clarkia concinna concinna (Onagraceae), which naturally experiences many fragmentation effects. We collected seeds from isolated and central subpopulations and created artificially inbred and outcrossed lines. Progeny from these crosses were planted into the field and greenhouse and assayed for fitness traits over the course of a growing season. Overall, inbreeding depression was substantial, ranging as high as 0.76 (for cumulative fitness in the field), and significant for plant height, fecundity, and above-ground biomass in all experiments. No inbreeding depression was detected for germination or survival rates in the greenhouse experiments, but in the field, survival was significantly depressed for inbred progeny. There was no evidence to support our hypothesis that increased inbreeding in isolated populations would lead to the purging of deleterious alleles and a decrease in the severity inbreeding depression. The most likely hypothesis to explain our results is that purging is not occurring more strongly in the isolated populations due to details of a number of genetic factors (e.g., selection against deleterious alleles is inconsistent or insufficient, or drift has caused fixation of deleterious alleles in these populations). This study supports the view that even when inbreeding depression is predicted to be less problematic, it may still be an important force influencing the fitness of populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We tested mutation accumulation hypothesis for the evolution of senescence using short‐lived and long‐lived populations of the seed‐feeding beetle, Acanthoscelides obtectus (Say), obtained by selection on early‐ and late‐life for many generations. The expected consequence of the mutation accumulation hypothesis is that in short‐lived populations, where the force of natural selection is the strongest early in life, the late‐life fitness traits should decline due to genetic drift which increases the frequency of mutations with deleterious effects in later adult stages. Since it is unlikely that identical deleterious mutations will increase in several independent populations, hybrid vigor for late‐life fitness is expected in offspring obtained in crosses among populations selected for early‐life fitness traits. We tested longevity of both sexes, female fecundity and male reproductive behavior for hybrid vigor by comparing hybrid and nonhybrid short‐lived populations. Hybrid vigor was confirmed for male virility, mating speed and copulation duration, and longevity of both sexes at late ages. In contrast to males, the results on female fecundity in short‐lived populations did not support mutation accumulation as a genetic mechanism for the evolution of this trait. Contrary to the prediction of this hypothesis, male mating ability indices and female fecundity in long‐lived populations exhibited hybrid vigor at all assayed age classes. We demonstrate that nonhybrid long‐lived populations diverged randomly regarding female and male reproductive fitness, indicating that sexually antagonistic selection, when accompanied with genetic drift for female fecundity and male virility, might be responsible for overriding natural selection in the independently evolving long‐lived populations.  相似文献   

4.
Inbreeding and extinction: Effects of rate of inbreeding   总被引:5,自引:0,他引:5  
Deleterious alleles may be removed (purged) bynatural selection in populations undergoinginbreeding. However, there is controversyregarding the effectiveness of selection inreducing the risk of extinction due toinbreeding, especially in relation to the rateof inbreeding. We evaluated the effect of therate of inbreeding on reducing extinction risk,in populations of Drosophila melanogastermaintained using full-sib mating (160replicates), or at effective population sizes(N e) of 10 (80) or 20 (80).Extinction rates in the populations maintainedusing full-sib mating occurred at lower levelsof inbreeding than in the larger populations,whereas the two larger populations did notdiffer significantly from each other.Inbreeding coefficients at 50% extinction were0.62, 0.79 and 0.77 for the full-sib (N e = 2.6), N e = 10 and N e = 20 treatments, respectively. Populations of N e = 20 that remained extant after 60 generations, showed inbreeding depression, with the mean fitness of these populations being only 45% of the outbredcontrols. There was considerable variationamong the 31 inbred populations in fitness, butnone of the N e = 20 populations hadfitness that was higher than the outbredcontrol. We conclude that purging may slow therate of extinction slightly, but it cannot berelied on to eliminate the deleterious effectsof inbreeding.  相似文献   

5.
García-Dorado A 《Genetics》2008,180(3):1559-1566
It has been widely appreciated that natural selection opposes the progress of inbreeding in small populations, thus limiting the actual inbreeding depression for fitness traits. However, no method to account for the consequences of this process has been given so far. I give a simple and intuitive method to predict inbreeding depression, taking into account the increase in selection efficiency against recessive alleles during inbreeding. It is based on the use of a “purged inbreeding coefficient” gt that accounts for the reduction of the probability of the deleterious homozygotes caused by the excess d of detrimental effect for deleterious alleles in the homozygous condition over its additive expectation. It is shown that the effect of purging can be important even for relatively small populations. For between-loci variable deleterious effects, accurate predictions can be obtained using the effective homozygous deleterious excess de, which can be estimated experimentally and is robust against variation of the ancestral effective population size. The method can be extended to any trait and it is used to predict the evolution of the mean viability or fecundity in a conservation program with equal or random family contributions.  相似文献   

6.
Inbreeding depression is commonly observed in natural populations. The deleterious effects of forced inbreeding are often thought to be less pronounced in populations with self-pollinating mating systems than in primarily outcrossing populations. We tested this hypothesis by comparing the performance of plants produced by artificial self- and cross-pollination from three populations whose outcrossing rate estimates were 0.03, 0.26, and 0.58. Outcrossing rates and inbreeding coefficients were estimated using isozyme polymorphisms as genetic markers. Analysis of F statistics suggests that biparental inbreeding as well as self-fertilization contribute to the level of homozygosity in the seed crop. Biparental inbreeding will reduce the heterozygosity of progeny produced by outcrossing, relative to random outcrossing expectations, and hence will reduce the effects of outcrossing versus self-fertilization. Heterotic selection may increase the average heterozygosity during the life history. Selfed and outcrossed seeds from all three populations were equally likely to germinate and survive to reproduce. However, inbreeding depression was observed in fecundity traits of plants surviving to reproduction in all three populations. Even in the population whose natural self-fertilization rate was 97%, plants grown from seed produced by self-pollination produced fewer fruits and less total seed weight than plants grown from outcrossed seed. There was no detectable inbreeding depression in estimated lifetime fitness. Inbreeding effects for all reproductive yield characters were most severe in the accession from the most outcrossing population and least severe in the accession from the most self-fertilizing population.  相似文献   

7.
The effect of inbreeding on haplo‐diploid organisms has been regarded as very low, because deleterious recessive genes on hemizygous (haploid) males were immediately purged generation by generation. However, we determined such recessive genes to decrease female fecundity in a population of Schizotetranychus miscanthi Saito which is known in the Acari as a subsocial species with haplo‐diploidy. In mother–son inbreeding experiments, there was no depression in egg hatchability nor in the larval survival of progeny over four generations. There was, on the other hand, significant inbreeding depression in the fecundity with increasing f‐value. Crosses between two lineages, one having deleterious effects on the fecundity and the other having no such effects, established during the inbreeding, revealed heterosis, and backcrosses showed that the depression was caused by deleterious recessive(s). These results strongly suggest the existence of some deleterious genes governing only the traits of adult females in wild populations of haplo‐diploid organisms.  相似文献   

8.
Under the 'good genes' mechanism of sexual selection (SS), females benefit from mate choice indirectly: their offspring inherit genes of the preferred, high quality fathers. Recent models assume that the genetic variance for male quality is maintained by deleterious mutations. Consequently, SS can be predicted to remove deleterious mutations from populations. We tested this prediction by relaxing selection in populations of the bulb mite, thus increasing their rate of accumulation of deleterious mutation. SS, allowed to operate in half of these populations, did not prevent the fitness decline observed in the other half of the relaxed selection lines. After 11 generations of relaxed selection, female fecundity in lines in which males were allowed to compete for females declined compared with control populations by similar amount as in monogamous lines (17.5 and 14.5%, respectively), whereas other fitness components (viability, longevity, male reproductive success) did not differ significantly between both types of lines and control populations.  相似文献   

9.
In an inbred population, selection may reduce the frequency of deleterious recessive alleles through a process known as purging. Empirical studies suggest, however, that the efficacy of purging in natural populations is highly variable. This variation may be due, in part, to variation in the expression of inbreeding depression available for selection to act on. This experiment investigates the roles of life stage and early‐life environment in determining the expression of inbreeding depression in Agrostemma githago. Four population‐level crosses (‘self’, ‘within’, ‘near’ and ‘far’) were conducted on 20 maternal plants from a focal population. Siblings were planted into one of three early environmental treatments with varying stress levels. Within the focal population, evidence for purging of deleterious recessive alleles, as well as for variation in the expression of inbreeding depression across the life cycle was examined. In addition, the effect of early environment on the expression of inbreeding depression and the interaction with cross‐type was measured. We find that deleterious recessive alleles have not been effectively purged from our focal population, the expression of inbreeding depression decreases over the course of the life cycle, and a stressful early environment reduces the variance in inbreeding depression expressed later in life, but does not consistently influence the relative fitness of inbred versus outcrossed individuals.  相似文献   

10.
The life history of the fruit fly (Drosophila melanogaster) is well understood, but fitness components are rarely measured by following single individuals over their lifetime, thereby limiting insights into lifetime reproductive success, reproductive senescence and post‐reproductive lifespan. Moreover, most studies have examined long‐established laboratory strains rather than freshly caught individuals and may thus be confounded by adaptation to laboratory culture, inbreeding or mutation accumulation. Here, we have followed the life histories of individual females from three recently caught, non‐laboratory‐adapted wild populations of D. melanogaster. Populations varied in a number of life‐history traits, including ovariole number, fecundity, hatchability and lifespan. To describe individual patterns of age‐specific fecundity, we developed a new model that allowed us to distinguish four phases during a female's life: a phase of reproductive maturation, followed by a period of linear and then exponential decline in fecundity and, finally, a post‐ovipository period. Individual females exhibited clear‐cut fecundity peaks, which contrasts with previous analyses, and post‐peak levels of fecundity declined independently of how long females lived. Notably, females had a pronounced post‐reproductive lifespan, which on average made up 40% of total lifespan. Post‐reproductive lifespan did not differ among populations and was not correlated with reproductive fitness components, supporting the hypothesis that this period is a highly variable, random ‘add‐on’ at the end of reproductive life rather than a correlate of selection on reproductive fitness. Most life‐history traits were positively correlated, a pattern that might be due to genotype by environment interactions when wild flies are brought into a novel laboratory environment but that is unlikely explained by inbreeding or positive mutational covariance caused by mutation accumulation.  相似文献   

11.
The genetic structure, selfing rate and inbreeding depression of the hermaphroditic freshwater snail Physa acuta were jointly analysed in a population near Montpellier, France. Allozymic markers revealed moderate gene diversity (0.138), and no heterozygote deficiency. The mean outcrossing rate, estimated by using progeny arrays, was 0.9, with substantial variation among families. This also suggests that the number of fathers among outcrossed offspring of a given mother is low. Inbreeding depression was estimated over more than one generation using 83 first‐laboratory‐generation (G1) families. The main parameters measured were parental (G1) fecundity, offspring (G2) survival and fecundity. Size and growth were also monitored. Parental fecundity was analysed under several conditions (isolation, pair and quadruplet outcrossing). The self‐fertilization depression, including parental fecundity, offspring survival and fecundity, was about 0.9 at the population level. The genetic data obtained in the same population indicate a value of about 0.3 using Ritland’s (1990) technique, suggesting that the depression over the whole life‐cyle might be even higher than 0.9. Grouping affected neither fecundity nor self‐fertilization depression. Substantial variation in depression for survival was detected among individuals, from no survival in some selfed families to better survival than that of outbred families in others. The overall result (outbred population structure, high outcrossing rate and high self‐fertilization depression) is consistent with what is expected in large outcrossing populations in which inbreeding depression is maintained by mutation‐selection balance.  相似文献   

12.
Directional dominance is a prerequisite of inbreeding depression. Directionality arises when selection drives alleles that increase fitness to fixation and eliminates dominant deleterious alleles, while deleterious recessives are hidden from it and maintained at low frequencies. Traits under directional selection (i.e., fitness traits) are expected to show directional dominance and therefore an increased susceptibility to inbreeding depression. In contrast, traits under stabilizing selection or weakly linked to fitness are predicted to exhibit little‐to‐no inbreeding depression. Here, we quantify the extent of inbreeding depression in a range of male reproductive characters and then infer the mode of past selection on them. The use of transgenic populations of Drosophila melanogaster with red or green fluorescent‐tagged sperm heads permitted in vivo discrimination of sperm from competing males and quantification of characteristics of ejaculate composition, performance, and fate. We found that male attractiveness (mating latency) and competitive fertilization success (P2) both show some inbreeding depression, suggesting they may have been under directional selection, whereas sperm length showed no inbreeding depression suggesting a history of stabilizing selection. However, despite having measured several sperm quality and quantity traits, our data did not allow us to discern the mechanism underlying the lowered competitive fertilization success of inbred (f = 0.50) males.  相似文献   

13.
The consequences of inbreeding on fitness can be crucial in evolutionary and conservation grounds and depend upon the efficiency of purging against deleterious recessive alleles. Recently, analytical expressions have been derived to predict the evolution of mean fitness, taking into account both inbreeding and purging, which depend on an ‘effective purging coefficient (de)’. Here, we explore the validity of that predictive approach and assay the strength of purging by estimating de for egg‐to‐pupae viability (EPV) after a drastic reduction in population size in a recently captured base population of Drosophila melanogaster. For this purpose, we first obtained estimates of the inbreeding depression rate (δ) for EPV in the base population, and we found that about 40% was due to segregating recessive lethals. Then, two sets of lines were founded from this base population and were maintained with different effective size throughout the rest of the experiment (= 6; = 12), their mean EPV being assayed at different generations. Due to purging, the reductions in mean EPV experienced by these lines were considerably smaller than the corresponding neutral predictions. For the 60% of δ attributable to nonlethal deleterious alleles, our results suggest an effective purging coefficient de > 0.02. Similarly, we obtain that de > 0.09 is required to roughly account for purging against the pooled inbreeding depression from lethal and nonlethal deleterious alleles. This implies that purging should be efficient for population sizes of the order of a few tens and larger, but might be inefficient against nonlethal deleterious alleles in smaller populations.  相似文献   

14.
We established replicated experimental populations of the annual plant Clarkia pulchella to evaluate the existence of a causal relationship between loss of genetic variation and population survival probability. Two treatments differing in the relatedness of the founders, and thus in the genetic effective population size (Ne), were maintained as isolated populations in a natural environment. After three generations, the low Ne treatment had significantly lower germination and survival rates than did the high Ne treatment. These lower germination and survival rates led to decreased mean fitness in the low Ne populations: estimated mean fitness in the low Ne populations was only 21% of the estimated mean fitness in the high Ne populations. This inbreeding depression led to a reduction in population survival: at the conclusion of the experiment, 75% of the high Ne populations were still extant, whereas only 31% of the low Ne populations had survived. Decreased genetic effective population size, which leads to both inbreeding and the loss of alleles by genetic drift, increased the probability of population extinction over that expected from demographic and environmental stochasticity alone. This demonstrates that the genetic effective population size can strongly affect the probability of population persistence.  相似文献   

15.
The importance of genetic drift in shaping patterns of adaptive genetic variation in nature is poorly known. Genetic drift should drive partially recessive deleterious mutations to high frequency, and inter‐population crosses may therefore exhibit heterosis (increased fitness relative to intra‐population crosses). Low genetic diversity and greater genetic distance between populations should increase the magnitude of heterosis. Moreover, drift and selection should remove strongly deleterious recessive alleles from individual populations, resulting in reduced inbreeding depression. To estimate heterosis, we crossed 90 independent line pairs of Arabidopsis thaliana from 15 pairs of natural populations sampled across Fennoscandia and crossed an additional 41 line pairs from a subset of four of these populations to estimate inbreeding depression. We measured lifetime fitness of crosses relative to parents in a large outdoor common garden (8,448 plants in total) in central Sweden. To examine the effects of genetic diversity and genetic distance on heterosis, we genotyped parental lines for 869 SNPs. Overall, genetic variation within populations was low (median expected heterozygosity = 0.02), and genetic differentiation was high (median FST = 0.82). Crosses between 10 of 15 population pairs exhibited significant heterosis, with magnitudes of heterosis as high as 117%. We found no significant inbreeding depression, suggesting that the observed heterosis is due to fixation of mildly deleterious alleles within populations. Widespread and substantial heterosis indicates an important role for drift in shaping genetic variation, but there was no significant relationship between fitness of crosses relative to parents and genetic diversity or genetic distance between populations.  相似文献   

16.
Y. B. Fu  K. Ritland 《Genetics》1996,144(1):339-348
We describe a multilocus, marker-based regression method for inferring interactions between genes controlling inbreeding depression in self-fertile organisms. It is based upon selfing a parent heterozygous for several unlinked codominant markers, then analyzing the fitness of progeny marker genotypes. If loci causing inbreeding depression are linked to marker loci, then viability selection is manifested by distorted segregation of markers, and fecundity selection by dependence of the fecundity character upon the marker genotype. To characterize this selection, fitness is regressed on the proportion of loci homozygous for markers linked to deleterious alleles, and epistasis is detected by nonlinearity of the regression. Alternatively, fitness can be regressed on the proportion of heterozygous loci. Other modes of selection can be incorporated with a bivariate regression involving both homozygote and heterozygote marker genotypes. The advantage of this marker-based approach is that ``purging' is minimized and specific chromosomal segments are identified; its disadvantage lies in low statistical power when linkage is not strong and/or the linkage phase between marker and selected loci is uncertain. Using this method, in the wildflower Mimulus guttatus, we found predominant multiplicative gene interaction determining fecundity and some negative synergistic (nonmultiplicative) interaction for viability.  相似文献   

17.
Inbreeding depression is a key factor influencing mating system evolution in plants, but current understanding of its relationship with selfing rate is limited by a sampling bias with few estimates for self‐incompatible species. We quantified inbreeding depression (δ) over two growing seasons in two populations of the self‐incompatible perennial herb Arabidopsis lyrata ssp. petraea in Scandinavia. Inbreeding depression was strong and of similar magnitude in both populations. Inbreeding depression for overall fitness across two seasons (the product of number of seeds, offspring viability, and offspring biomass) was 81% and 78% in the two populations. Chlorophyll deficiency accounted for 81% of seedling mortality in the selfing treatment, and was not observed among offspring resulting from outcrossing. The strong reduction in both early viability and late quantitative traits suggests that inbreeding depression is due to deleterious alleles of both large and small effect, and that both populations experience strong selection against the loss of self‐incompatibility. A review of available estimates suggested that inbreeding depression tends to be stronger in self‐incompatible than in self‐compatible highly outcrossing species, implying that undersampling of self‐incompatible taxa may bias estimates of the relationship between mating system and inbreeding depression.  相似文献   

18.
I assessed the relationship between the level of inbreeding, F, and fitness, and the effects of nonmaternal and maternal components of inbreeding on fitness in Phacelia dubia. I conducted two generations of controlled crosses and tested the performance of the F2 progeny in field and artificial conditions covering the whole life cycle. Inbreeding significantly decreased the individual contribution of seeds to the next generation in the field, but this decrease apparently is not enough to explain the maintenance of gynodioecy. The inbred progeny contributes significantly to the population genetic structure of P. dubia. Fitness estimates and fitness components tended to decrease, usually monotonically, with F. However, nonmonotonic relationships were found in male fitness components and, in some families, in fitness estimates, seed production per fruit, and establishment. Most of the inbreeding depression takes place at the level of seed establishment in the field, but, in artificial conditions the effects of inbreeding were similar at fecundity and establishment. I studied maternal and nonmaternal components of inbreeding by testing the effects of the relatedness of maternal grandparents and parents on the performance of the progeny. Both components affected fitness. Inbreeding depression was conditioned by the level of inbreeding of the maternal plant, but this interaction varied at different fitness components. Also, the magnitude and even the direction of the relationship between fitness and F changed as a result of the combined effects of maternal and nonmaternal components of inbreeding. Such interactions can render convex or concave fitness functions, giving in the latter case the appearance of a false purging. Maternal effects of inbreeding can result from several processes: maternal investment perhaps with serial adjustments during seed development, purging of recessive deleterious genes, and nucleocytoplasmic interactions. These results illustrate the importance of maternal effects of inbreeding, and the complex effects of inbreeding on fitness. A full understanding of the fitness consequences of inbreeding and, therefore, their potential implications in the evolution of breeding systems, should take into account male and female components as well as transgenerational effects in the context of the particular environment in which fitness is evaluated.  相似文献   

19.
It has been hypothesized that natural selection reduces the “genetic load” of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection.  相似文献   

20.
Despite fundamental importance to population dynamics, mating system evolution, and conservation management, the fitness consequences of breeding patterns in natural settings are rarely directly and rigorously evaluated. We experimentally crossed Echinacea angustifolia, a widespread, perennial prairie plant undergoing radical changes in distribution and abundance due to habitat fragmentation. We quantified the effects of both biparental inbreeding and crossing between remnant populations on progeny survival and reproduction in the field over the first eight years. Lifetime fitness is notoriously difficult to assess particularly for iteroparous species because of the long sequence and episodic nature of selection events. Even with fitness data in hand, analysis is typically plagued by nonnormal distributions of overall fitness that violate the assumptions of the usual parametric statistical approaches. We applied aster modeling, which integrates the measurements of separate, sequential, nonnormally distributed annual fitness components, and estimated current biparental inbreeding depression at 68% in progeny of sibling‐mating. The effect of between‐remnant crossing on fitness was negligible. Given that relatedness among individuals in remnant populations is already high and dispersal very limited, inbreeding depression may profoundly affect future dynamics and persistence of these populations, as well as their genetic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号