首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetically obese (ob/ob) mice develop insulin resistance in brown adipose tissue during the fifth week of life. Prior to this, at 26 days of age, oh/oh mice show a substantial increase in GDP binding to brownadipose-tissue mitochondria during acute cold exposure. When insulin resistance in brown fat develops, by 35 days of age, the increase in GDP binding in response to cold is markedly reduced. Studies with 2-deoxyglucose suggest that insulin resistance in brown adipose tissue could impair thermogenic responsiveness during acute cold exposure by limiting the ability of the tissue to take up glucose.  相似文献   

2.
The hyperphagia and rapid body weight gain normally observed in young obese (ob/ob) mice were abolished by removal of their adrenal glands, whereas food intake and weight gain of lean mice were not significantly affected by adrenalectomy. Adrenalectomy lowered body energy density (kcal/g carcass) in obese mice more than could be attributed to reduced food intake per se, suggesting that their energy expenditure was also increased. In control obese mice, low stimulation of brown adipose tissue by the sympathetic nervous system, as indicated by the low fractional rates of norepinephrine (NE) turnover in their brown adipose tissue may have contributed to the reduced energy expenditure in these animals. Adrenalectomy increased the rates of NE turnover in brown adipose tissue of obese mice to rates nearly equal to those observed in lean mice without affecting NE turnover in this tissue of lean mice. Likewise, removal of the adrenals normalized the low rates of NE turnover in hearts of obese mice without affecting lean mice. Rates of NE turnover in two other organs, white adipose tissue and pancreas, of control and adrenalectomized obese mice were similar to rates observed in lean counterparts. The adrenal may thus contribute to both the hyperphagia and the low energy expenditure by brown adipose tissue that together cause gross obesity in ob/ob mice.  相似文献   

3.
It has been suggested that increased dietary calcium intake can attenuate obesity. Calcium antagonists, such as benidipine, also have been shown to have an anti-obesity effect. However, the mechanism for calcium-related anti-obesity effect has not yet been established. A defective brown adipose tissue thermogenesis has been shown in obese rodents. This study was designed to examine the direct effects of calcium channel blocker benidipine and calmodulin antagonist W7 administration on the adaptive thermogenesis in brown adipose tissue taken from the genetically obese mice and their lean controls. The GDP binding to brown-fat cell mitochondria was used as a brown adipose tissue thermogenic index. The results show that benidipine treatment had no marked effect on brown-fat cell GDP-binding capacities in both obese and lean mice. However, GDP-binding capacities were significantly reduced in both obese and lean mice after the W7 administration. The results of this study support the previous finding that benidipine did not have direct thermogenic effect on brown adipose tissue and suggest that the change in intracellular calmodulin availability might contribute to the adaptive thermogenesis in brown adipose tissue.  相似文献   

4.
Adrenalectomy (ADX) prevents the excessive weight gain in the genetically obese ob/ob and db/db mice. To test the possibility that this results from increased energy expenditure due to increased thermogenesis in brown adipose tissue (BAT), we measured GDP binding to mitochondria from interscapular brown adipose tissue (BAT) in db/db and ob/ob mice and their lean controls after adrenalectomy, with and without corticosterone replacement. Both the vehicle treated and corticosterone treated db/db and ob/ob mice had lower body weights than the sham-operated mice GDP binding to mitochondria from IBAT was significantly lower in both the db/db and ob/ob mice than in their lean controls. Adrenalectomy significantly increased GDP binding in all mice compared to the respective sham-operated mice, but, the percentage increase was always greater in the db/db and ob/ob mice. Corticosterone treatment of adrenalectomized db/db, ob/ob or lean mice lowered GDP binding to sham levels. Our data confirm previous findings that adrenalectomy results in increased GDP binding to mitochondria from IBAT. Injections of corticosterone into adrenalectomized mice results in a decrease in GDP binding to values which are similar to values in sham-operated mice. Thus adrenalectomy may inhibit the development of obesity by increasing the thermic activity in IBAT.  相似文献   

5.
Isolated mitochondria from liver or brown adipose tissue of obese ob/ob mice demonstrated increased rates of Ca2+ uptake and release compared with those of lean mice. This enhanced transport activity was not found in mitochondria from kidney or skeletal muscle. Respiration-induced membrane potential was the same in mitochondria from lean and ob/ob mice. It is therefore concluded that the increased Ca2+ uptake rates reflect an activation of the Ca2+ uniporter rather than a change in the electrophoretic driving force. As mitochondria from pre-obese ob/ob mice did not show elevated rates of Ca2+ transport, the activated transport in the obese animals was thus a consequence of the state of obesity rather than being a direct effect of the ob/ob genotype. It is suggested that the enhanced activity of the Ca2+-transport pathways in liver and brown adipose tissue may alter metabolic functions in these tissues by modifying cytoplasmic or intramitochondrial Ca2+ concentrations.  相似文献   

6.
S W Mercer  P Trayhurn 《FEBS letters》1986,195(1-2):12-16
Genetically obese (ob/ob) mice develop a marked insulin resistance in brown adipose tissue soon after weaning, and this is paralleled by a fall in the acute activation of the mitochondrial proton conductance pathway in the tissue on cold exposure. Treatment of ob/ob mice with ciglitazone, a new oral hypoglycaemic, led to a restoration of insulin sensitivity in brown adipose tissue. The amelioration of insulin resistance was accompanied by a normalization of the acute, cold-induced increase in mitochondrial GDP binding. These results support the hypothesis that the development of insulin resistance in brown adipose tissue is an important factor in the impaired thermogenic responsiveness of obese mice.  相似文献   

7.
The effect of housing density of mice on the thermogenic state and capacity of their brown adipose tissue was studied. Mice were housed one, two, or six per cage at 28 degrees C for 15 days. Increased housing density suppressed the thermogenic capacity of brown adipose tissue (decreased the total amount of uncoupling protein) and decreased the thermogenic state of brown adipose tissue mitochondria (decreased GDP binding). A density of six mice per cage had a greater effect than a density of two mice per cage. The size of brown adipose tissue (wet weight and protein content), the content of mitochondria in it (cytochrome oxidase content), and the total activity of thyroxine 5'-deiodinase were not altered by housing density. We conclude that even at a temperature close to thermoneutrality (29-33 degrees C for the mouse), the occurrence of social thermoregulation (huddling) reduces the requirement for brown adipose tissue thermogenesis and results in a reduction in its thermogenic capacity. It is clearly of importance that the design of studies of mouse brown adipose tissue take into account not only the temperature at which the mice are housed, but also the number of mice housed per cage.  相似文献   

8.
Feeding acafeteria diet to mice resulted in an increased energy intake of approximately 30% and this led to increases in the wet weight, total protein content , and total cytochrome oxidase activity of interscapular and dorso-cervical brown adipose tissue. Surgical removal of interscapular brown adipose tissue, followed by cafeteria feeding, gave rise to an elevation in dorso-cervical brown adipose tissue wet weight, total protein content, and total cytochrome oxidase activity, compared to intact cafeteria-fed mice. Cafeteria feeding with or without the removal of interscapular brown adipose tissue did not lead to significant increases in body weight compared to stock-fed control mice, but both cafeteria-fed groups of mice showed significant elevations in body fat content indicating that the induced hyperphagia led to a relative obesity in the cafeteria-fed groups. The results presented are consistent with an increased thermogenic activity in the brown adipose tissue of cafeteria-fed mice, and the effect of the removal of interscapular brown adipose tissue further indicates the quantitative importance of the tissue in the control of body weight.  相似文献   

9.
Restriction of energy intake significantly reduces mammary tumorigenesis in normal rats exposed to carcinogens. Genetically obese LA/N-cp (corpulent) female rats were given 7,12-dimethylbenz[a]anthracene and fed purified diets ad libitum or restricted to 60% of the ad libitum caloric intake. Phenotypically lean littermates were also fed ad libitum. Obese animals developed large mammary tumors more rapidly than genetically normal rats so that 100% of the animals had tumors in less than 16 weeks. Only 21% of the lean animals developed tumors; the energy restricted obese animals had a tumor incidence of 27%. Although obese rats fed the restricted diet weighed significantly less than those fed ad libitum, percent body fat was not reduced, indicating that lean tissue was affected more. Obese animals were markedly hyperinsulinemic (1003 +/- 193 microunits/ml) and energy restriction reduced this to 328 +/- 41; the lean animals had insulin levels of 12 +/- 2. Tumor-bearing rats had higher insulin levels than rats without tumors. These data suggest that body fatness is not directly associated with risk of carcinogenesis. Lean body mass, adipose tissue mass, and their interaction with insulin in its capacity as a growth factor rather than body fatness per se may be determinants of tumor promotion.  相似文献   

10.
Atractyloside-insensitive binding of purine nucleotides is reduced in brown adipose tissue mitochondria of the obese (obob) mouse. Exposure of the obob mouse to 4°C does not induce the usual increase in binding. Atractyloside-insensitive binding of purine nucleotides is believed to be a measure of the heat-producing proton conductance pathway in brown adipose tissue mitochondria. It is, therefore, suggested that the impaired thermogenesis of the obob mouse is due to a defect in this pathway in the mitochondria of the brown adipose tissue, the major thermogenic tissues in rodents. The greater metabolic efficiency which would result from a reduced operation of this pathway might be the basis for the obesity in the obob mouse.  相似文献   

11.
Brown adipose tissue is a thermogenic organ that dissipates stored energy as heat to maintain body temperature. This process may also provide protection from development of diet-induced obesity. We report that the bioactive lipid mediator lysophosphatidic acid (LPA) markedly decreases differentiation of cultured primary brown adipocyte precursors, whereas potent selective inhibitors of the LPA-generating enzyme autotaxin (ATX) promote differentiation. Transgenic mice overexpressing ATX exhibit reduced expression of brown adipose tissue-related genes in peripheral white adipose tissue and accumulate significantly more fat than wild-type controls when fed a high-fat diet. Our results indicate that ATX and its product LPA are physiologically relevant negative regulators of brown fat adipogenesis and are consistent with a model in which a decrease in mature peripheral brown adipose tissue results in increased susceptibility to diet-induced obesity in mice.  相似文献   

12.
Exposure of a normal lean mouse to cold (14 degrees C) for 12 h increases the activity of thyroxine 5'-deiodinase in brown adipose tissue 26-fold. In contrast, exposure of the genetically obese, ob/ob, mouse to cold results in little more than a doubling of thyroxine 5'-deiodinase activity. The physiological significance of endogenous 3,5,3'-triiodothyronine production in brown adipose tissue is not understood. However, it seems likely that defective cold-induced stimulation of the 5'-deiodinase in brown adipose tissue of the ob/ob mouse might cause a relatively hypothyroid state of the tissue. Thyroid hormone is known to be required for a normal thermogenic response of brown adipose tissue to noradrenaline. It is suggested that the defect in the response of the 5'-deiodinase in the ob/ob mouse could contribute to the defective thermogenic response of brown adipose tissue to cold-exposure and to noradrenaline.  相似文献   

13.
The level of mRNA for uncoupling protein was measured in brown adipose tissue of young (8-10 weeks) and old (11 months) lean and ob/ob mice using a cDNA clone constructed previously. The level of poly(A)+ RNA was also measured using an oligo(dT)18 probe. Mice were kept at 28 degrees C or exposed to 14 degrees C for 12 h. The level of mRNA for uncoupling protein was normal in brown adipose tissue of younger obese mice but reduced in brown adipose tissue of old obese mice. The cold-induced absolute increase in uncoupling protein mRNA was smaller in obese mice, regardless of age. It is concluded that the known attenuation of the acute thermogenic response of brown adipose tissue of the ob/ob mouse to cold is accompanied by a similar attenuation of the initiation of the trophic response. It is likely, however, that these defects are secondary to the chronic reduction in sympathetic nervous system activity in brown adipose tissue of the ob/ob mouse, which results in a functional atrophy of the tissue.  相似文献   

14.
Development of brown and beige/brite adipocytes increases thermogenesis and helps to reduce obesity and metabolic syndrome. Our previous study suggests that dietary raspberry can ameliorate metabolic syndromes in diet-induced obese mice. Here, we further evaluated the effects of raspberry on energy expenditure and adaptive thermogenesis and determined whether these effects were mediated by AMP-activated protein kinase (AMPK). Mice deficient in the catalytic subunit of AMPKα1 and wild-type (WT) mice were fed a high-fat diet (HFD) or HFD supplemented with 5% raspberry (RAS) for 10 weeks. The thermogenic program and related regulatory factors in adipose tissue were assessed. RAS improved the insulin sensitivity and reduced fat mass in WT mice but not in AMPKα1-/- mice. In the absence of AMPKα1, RAS failed to increase oxygen consumption and heat production. Consistent with this, the thermogenic gene expression in brown adipose tissue and brown-like adipocyte formation in subcutaneous adipose tissue were not induced by RAS in AMPKα1-/- mice. In conclusion, AMPKα1 is indispensable for the effects of RAS on brown and beige/brite adipocyte development, and prevention of obesity and metabolic dysfunction.  相似文献   

15.
In this study, we investigate the in vitro effect of zinc addition on guanosine diphosphate (GDP) binding to mitochondria in brown adipocytes of genetically obese (ob/ob) mice. Interscapular brown adipocytes of male mice (obese; lean) at 4 and 12 wk of age were incubated with 0, 50, 100, or 200 μM zinc sulfate. Mitochondria were then isolated and their GDP binding capacities were measured. The GDP-binding capacities of ob/ob mice were lower than lean mice, with or without zinc addition, in both age groups (p<0.05). Zinc addition did not have any significant effect on GDP binding in lean mice. GDP binding decreased with increasing zinc addition in ob/ob mice, and this attenuation was more predominant in 12-wk old ob/ob mice. Moreover, we found that high magnesium addition (5 mM) increased GDP binding in lean mice, but this effect was not significant in ob/ob mice. This study reveals that brown adipose tissue thermogenesis in ob/ob mice could be greatly attenuated by zinc addition, suggesting that zinc may play a regulatory role in obesity.  相似文献   

16.
The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.  相似文献   

17.
The activation of brown adipose tissue adenylate cyclase by catecholamines was studied in genetically obese (ob/ob) and lean mice. In obese mice, the maximum activation of the enzyme by several beta-adrenergic agonists was only two-thirds that in lean mice and, as an activator, noradrenaline was only one-eighth as potent. The adenylate cyclase was also less responsive to guanine nucleotides. In these respects, the defect in catecholamine-stimulated adenylate cyclase was similar in both white and brown adipose tissue of the obese mouse. The enzyme in brown adipose tissue differed from that in white adipose tissue in its sensitivity to other beta-adrenergic agonists and in its requirement for Mg2+. It is suggested that this abnormal catecholamine-activated adenylate cyclase in brown adipose tissue may be relate to the thermoregulatory defect of the obese mouse and hence may contribute to the obesity syndrome.  相似文献   

18.
Norepinephrine turnover and energetic efficiency studies were conducted in three groups of male Sprague-Dawley rats placed on low iron diets for 5 weeks on weaning. Iron-deficient rats had significant anemia (hematocrit less than 20%) and growth retardation relative to pair-fed and ad libitum fed controls who received the same diet plus weekly iron dextran injections. Energetic efficiency over a 7-day period was nearly 30% less in anemic animals. This was associated with significantly higher rates of norepinephrine turnover in brown adipose tissue (110%) and heart (330%) with significant hypertrophy in both tissues. There was no difference in body composition in ad libitum groups. Plasma triiodothyronine and thyroxine were reduced by 37% in iron deficients compared to controls. Thus 39% increase in caloric requirements in iron deficiency is associated with increased sympathetic and perhaps thermogenic activity in brown adipocytes.  相似文献   

19.
The concentration of the 'uncoupling protein' in brown adipose tissue mitochondria has been measured in lean and obese (ob/ob) mice and Zucker (fa/fa) rats at different ages using a specific radioimmunoassay. During the suckling period the concentration of the protein was similar in normal and mutant animals of both types, despite the decrease in mitochondrial GDP binding observed in the obese. The concentration of uncoupling protein was, however, decreased in adult ob/ob mice and adult Zucker rats compared with their respective lean siblings, in parallel with the decrease in GDP binding. It is concluded that there is a 'masked', or inactive, form of uncoupling protein in young ob/ob mice and fa/fa rats.  相似文献   

20.
Obese-hyperglycaemic mice and lean mice were injected with dichloroacetate to determine the significance of gluconeogenesis in maintaining the hyperglycaemia of obese mice and to investigate the effects of a fall in blood glucose on fatty acid synthesis. One hour after the second of two, hourly, injections of dichloroacetate the blood glucose concentrations in fed and starved lean mice were decreased, whereas in obese mice they were sharply increased. In obese and lean mice, both fed and starved, dichloroacetate decreased plasma lactate but insulin was unchanged. The quantity of liver glycogen was decreased in all dichloroacetate treated mice, with the largest falls in fed and starved obese mice, which had much larger glycogen stores than lean mice. Dichloroacetate treatment decreased the concentration of plasma non-esterified fatty acids in fed and starved obese mice and fed lean mice but not in starved lean mice. Fatty acid synthesis in white (inguinal, subcutaneous) adipose tissue was stimulated by dichloroacetate in fed obese mice and inhibited in fed lean mice. Fatty acid synthesis in brown adipose tissue (scapular) was faster than in white adipose tissue and was less affected by dichloroacetate although the changes were in the same direction as in white adipose tissue. We attribute the increased hyperglycaemia of obese mice treated with dichloroacetate to increased glycogenolysis coupled with a failure to secrete additional insulin in response to the raised blood glucose. This high blood glucose concentration in dichloroacetate treated obese mice may in turn explain the increased fatty acid synthesis in their white adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号