首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dye methylene blue was found to inhibit sporulation inBacillus subtilis 168. The compound blocked spore formation at concentrations subinhibitory to vegetative growth while allowing synthesis of serine protease, antibiotic, and certain catabolite-repressed enzymes. The sporulation process was sensitive to the inhibitor through T6, but germination and outgrowth were not affected by the presence of the compound. The inhibition of sporulation may be related to the ability of the compound to inhibit oxidative phosphorylation.  相似文献   

3.
The first acceleration of protein degradation in cells ofBacillus megaterium was found at the stage 0–I of sporulation, the second one at the stage II–III, where the sporulation process became irreversible. These accelerations were reduced by actinomycin D inhibiting RNA and protein syntheses by more than 95%. In the presence of the antibiotic, only 8% of prelabeled proteins were degraded. Actinomycin D did not lower either the concentration of ATP or the proteolytic activity in the homogenate prepared from sporulating cells. This indicates that the inhibition of protein catabolism by actinomycin D was not owing to the absence of ATP or proteolytic enzymes. Actinomycin probably inhibited an unknown step preceding the proteolytic attack of the protein molecules during sporulation, because it had no significant effect on proteolysis during vegetative growth.  相似文献   

4.
Cultures ofBacillus subtilis in balanced growth exhibited a constant rate of turnover of peptidoglycan for 2.5–3.5 generations. Turnover was measured by determining the retention of a labeled precursor of peptidoglycan. When fluorescein-conjugated concanavalin A was used to monitor the fate of cell surface teichoic acid, label disappeared from the cylinders more rapidly than from caps and septa. The results suggest that cell wall poles are partially resistant to turnover.  相似文献   

5.
Cell-bound alkaline phosphatase ofBacillus cereus was produced during vegetative growth and sporulation in a complex medium. Addition of glucose repressed the sporulation process and the amount of enzyme synthesized increased. The time course of alkaline phosphatase production is very similar in both sporulating and non-sporulating cells. Irrespective of sporulation, alkaline phosphatase level shows a peak of activity in the exponential phase, and another in the stationary phase of growth. This preliminary data indicates differences betweenB. cereus, andB. subtilis in alkaline phosphatase characteristics.  相似文献   

6.
Intracellular proteolytic activity increased during incubation of the sporogenic strain ofBacillus megaterium KM in a sporulation medium together with excretion of an extracellular metalloprotease. The exocellular protease activity in a constant volume of the medium reached a 100-fold value with respeot to the intracellular activity. Maximal values of the activity of both the extracellular and intracellular enzyme were reached after 3 – 5 h of incubation. After 7 h 20 – 50% cells formed refractile spores. The intracellular proteolytic system hydrolyzed denatured proteinsin vitro at a rate up to 150 μg mg-1 h-1 and native proteins at a rate up to 70 μg mg-1 h-1. Degradation of proteinsin vivo proceeded from the beginning of transfer to the sporulation medium at a constant rate of 40 μg mg-1 h-1 and the inactivation of beta-galactosidase at a rate of 70 μg mg-1 h-1. The intracellular proteolytic activity was inhibited to 65 – 88% by EDTA, to 23 – 76% by PMSF. Proteolysis of denatured proteins was inhibited both by EDTA and PMSF more pronouncedly than proteolysis of native proteins; 50 – 65% of the activity were localized in protoplasts. Another strain ofBacillus megaterium (J) characterized by a high (up to 90%) and synchronous sporulation activity was found to behave in a similar way, but the rate of protein turnover in this strain was almost twice as high. The asporogenic strain ofBacillus megaterium KM synthesized the exocellular protease in the sporulation medium, but its protein turnover was found to decrease substantially after 3 – 4 h. The intraeellular proteolytic system of the sporogenic strain J and the asporogenic strain KM were also inhibited by EDTA and PMSF.  相似文献   

7.
8.
A number ofBacillus subtilis mutants that are able to sporulate in the presence of relatively high concentrations of carbon sources have been isolated in our laboratory. The present study shows that some of the mutants are also able to sporulate in the presence of nalidixic acid (Nal) under the condition where sporulation of wild-type strains is inhibited. Furthermore, it has been found that a Nal-resistant mutant is unable to sporulate normally when Nal (40 μg/ml) or glucose (55 mM) is present. Since the adverse effect of Nal on inducible enzymes is eliminated when bacterial strains carry a Nal-resistance marker, the above result suggests that the effect of this drug on sporulation might be mediated by a unique mechanism.  相似文献   

9.
Spores ofBacillus subtilis A were produced at different temperatures (23°–49°C) and examined for a number of sporal characteristics. Spore heat resistance increased with sporulation temperature to 45°C, with spores grown at 49°C showing a dramatic reduction in resistance. Spore crops showed biphasic thermal death curves whether enumerated on germination medium with or without calcium dipicolinate. This strain produces both rough and smooth variants. Of the spores produced at 23°C, 99% were rough, had a density of 1.305, and an average core/core + cortex volume ratio of 0.1838. At 49°C, 99% were smooth, had a density of 1.275, and an average volume ratio of 0.3098. Between these temperatures both spore types were produced. There appeared to be no direct correlation with sporulation temperature, heat resistance, and dipicolinate content. There was an increase in both the magnesium and calcium contents to 45°C with a dramatic reduction at 49°C. The 1.305 density spores had higher calcium and dipicolinate contents than the 1.275 spores, although both spore types showed biphasic thermal death curves. The mechanisms involved in determining which spore type (rough/smooth) is produced at a specific growth temperature is unknown.Florida Agricultural Experiment Station Journal Series Number R-00312.  相似文献   

10.
Bacterial cells degrade intracellular proteins at elevated rates during starvation and can selectively degrade proteins by energy-dependent processes. Sporulating bacteria can degrade protein with apparent first-order rate constants of over 0.20 h-1. We have shown, with an optimized [14C]leucine-labeling and chasing procedure, in a chemically defined sporulation medium, that intracellular protein degradation in sporulating cells of Bacillus subtilis 168 (trpC2) is apparently energy dependent. Sodium arsenate, sodium azide, carbonyl cyanide m-chlorophenylhydrozone, and N,N'-dicyclohexylcarbodiimide, at levels which did not induce appreciable lysis (less than or equal to 10%) over 10-h periods of sporulation, inhibited intracellular proteolysis by 13 to 93%. Exponentially growing cells acquired arsenate resistance. In contrast to earlier reports, we found that chloramphenicol (100 micrograms/ml) strongly inhibited proteolysis (68%) even when added 6 h into the sporulation process. Restricting the calcium ion concentration (less than 2 microM) in the medium had no effect on rates or extent of vegetative growth, strongly inhibited sporulation (98%), and inhibited rates of proteolysis by 60% or more. Inhibitors of energy metabolism, at the same levels which inhibited proteolysis, did not affect the rate or degree of uptake of Ca2+ by cells, which suggested that the Ca2+ and metabolic energy requirements of proteolysis were independent. Restricting the Ca2+ concentration in the medium reduced by threefold the specific activity in cells of the major intracellular serine proteinase after 12 h of sporulation. Finally, cells of a mutant of B. subtilis bearing an insertionally inactivated gene for the Ca2(+)-dependent intracellular proteinase-1 degraded protein in chemically defined sporulation medium at a rate indistinguishable from that of the wild-type cells for periods of 8 h.  相似文献   

11.
12.
While vegetative Bacillus subtilis cells and mature spores are both surrounded by a thick layer of peptidoglycan (PG, a polymer of glycan strands cross‐linked by peptide bridges), it has remained unclear whether PG surrounds prespores during engulfment. To clarify this issue, we generated a slender ΔponA mutant that enabled high‐resolution electron cryotomographic imaging. Three‐dimensional reconstructions of whole cells in near‐native states revealed a thin PG‐like layer extending from the lateral cell wall around the prespore throughout engulfment. Cryotomography of purified sacculi and fluorescent labelling of PG in live cells confirmed that PG surrounds the prespore. The presence of PG throughout engulfment suggests new roles for PG in sporulation, including a new model for how PG synthesis might drive engulfment, and obviates the need to synthesize a PG layer de novo during cortex formation. In addition, it reveals that B. subtilis can synthesize thin, Gram‐negative‐like PG layers as well as its thick, archetypal Gram‐positive cell wall. The continuous transformations from thick to thin and back to thick during sporulation suggest that both forms of PG have the same basic architecture (circumferential). Endopeptidase activity may be the main switch that governs whether a thin or a thick PG layer is assembled.  相似文献   

13.
14.
Conditions for zymographic detection of a 41-kDa spore cortex hydrolysis-specific autolysin, A6, from Bacillus subtilis 168 were optimised. A6 was present during sporulation from stages II–IV and remained active in the dormant spore. Its expression was controlled by the mother cell-specific early-sporulation sigma factor σE. The characteristic muramic acid δ-lactam of spore cortical peptidoglycan was not necessary for cortex hydrolysis by A6, but it may be important in the inability of the major vegetative autolysin LytC to digest wild-type cortex. Two other minor autolysins were also observed during sporulation. The possible physiological significance of these observations is discussed.  相似文献   

15.
16.
The Hsp70 co-chaperone CHIP has recently gained attention as a regulator of protein turnover. CHIP has now been reported to be a component of the ubiquitination cascade, specifically an E3 ligase. CHIP appears to be part of a system that diverts incorrectly folded proteins from chaperones to the proteasome.  相似文献   

17.
Motility of Bacillus subtilis during growth and sporulation.   总被引:2,自引:2,他引:0       下载免费PDF全文
The change of motility and the presence of flagella were followed throughout growth and sporulation in a standard sporulating strain and in 19 cacogenic sporulation mutants of Bacillus subtilis. For the standard strain, the fraction of motile cells decreased during the developmental period to less than 10% at T4. Motility was lost well before the cells lose their flagella. Conditions reducing the decrease of motility also reduced sporulation: motile cells never contained spores. The decrease of motility was not coupled with a decrease in the cellular concentration of adenosine 5'-triphosphate or a decline in oxygen consumption, but an uncoupling agent immediately destroyed motility at any time. Apparently, motility decreased during development because it became increasingly uncoupled from the energy generating systems of the cell. The motility of sporulation mutants decreased after the end of growth at the same time as or earlier than the motility of the standard strain; the early decrease of motility in an aconitase mutant, but not that in an alpha-ketoglurate dehydrogenase mutant, could be avoided by addition of L-glutamate. Sporulation or related events such as extracellular antibiotic or protease production were not needed for the motility decline.  相似文献   

18.
Asporogenous mutants ofBacillus subtilis marburg   总被引:8,自引:0,他引:8  
  相似文献   

19.
Heat-shock proteins during growth and sporulation of Bacillus subtilis   总被引:6,自引:0,他引:6  
Four major heat-shock proteins (hsps) with apparent molecular masses of 84, 69, 32 and 22 kDa were detected in exponentially growing stationary phase and sporulating cells of Bacillus subtilis heat-shocked from 30 to 43 degrees C. The most abundant, hsp69, is probably analogous to the E. coli groEL protein. These proteins were transiently inducible by heat-shock. Partial purification of RNA polymerase revealed several other minor hsps. One of these, a 48 kDa polypeptide probably corresponds to sigma 43. The synthesis of this polypeptide and at least two other proteins appeared to be under sporulation and heat-shock regulation and was affected by the SpoOA mutation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号