首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
以日光温室内栽培的三年生油桃"早红艳"(Prunus persica L. var. nectarine Ait "Zao Hong Yan")为试材,利用透射电子显微镜(TEM)技术首次对处于正常光照条件和弱光条件下的源叶的韧皮组织进行了超微结构观察,重点研究了叶片超微结构对弱光的响应.结果表明:在正常光照条件下,油桃源叶各级叶脉的筛管和伴胞的平均直径均比弱光条件下的大,表明光能影响细胞的发育,而弱光抑制了细胞的生长.在正常光照下的伴胞具有致密的细胞质,内含丰富的线粒体、内质网、多泡体、囊泡和质体,而弱光下的伴胞明显液泡化,同时含有少量的线粒体和内质网.在弱光条件下也观察到叶绿体基粒片层边缘紊乱,筛孔处于阻塞状态.在弱光下,邻近维管束鞘细胞的叶肉细胞内积累了大量的淀粉粒和少量的线粒体.淀粉粒的积累可能是由于光合同化产物的生产与输出之间的不平衡,这一观察结果有力地支持了大部分叶片是在光照条件下输出其大部分同化产物的观点.在筛管/伴胞、伴胞/韧皮薄壁细胞、韧皮薄壁细胞/韧皮薄壁细胞和韧皮薄壁细胞/维管束鞘细胞之间的胞间连丝密度都在弱光条件下下降,在正常光照强度下支脉筛管/伴胞和韧皮薄壁细胞/维管束鞘细胞之间可以观察到胞间连丝,而在弱光下几乎观察不到胞间连丝的存在,所以同化物的运输在弱光条件下可能以质外体运输为主,而在正常光照强度下,共质体运输可能是主要的运输方式.这些研究结果证明,日光温室内油桃通过源叶韧皮组织超微结构的变化对弱光做出适应性响应.  相似文献   

2.
为了探讨灵武长枣果实光合同化物韧皮部卸载和运输的途径,该研究采用透射电镜技术,对不同发育时期灵武长枣果实维管束韧皮部及其周围薄壁细胞的超微结构特征进行了分析.结果表明:筛管/伴胞复合体及其周围韧皮薄壁细胞间在果实膨大前期富含胞间连丝,而韧皮薄壁细胞与周围库细胞以及相邻库细胞间几乎不存在胞间连丝,形成共质体隔离;筛管/伴...  相似文献   

3.
葡萄果肉同化物卸载区细胞间的共质体联系与隔离   总被引:13,自引:0,他引:13  
应用透射电镜技术对葡萄果肉同化物卸载区细胞(周缘维管束韧皮部及其周围同化物库细胞)的超微结构及胞间联系进行了系统观察。结果表明:在葡萄果实发育前期,韧皮部筛分子(SE)与伴胞(CC)之间、SE/CC复合体之间、SE/CC复合体与韧皮薄壁细胞之间,以及韧皮薄壁细胞相互之间都有十分丰富的胞间连丝,因此,韧皮部内之间、SE/CC复合体与韧皮薄壁细胞之间,以及韧皮薄壁细胞相互之间都有十分丰富的胞间连丝,因  相似文献   

4.
应用透射电镜技术研究了宁夏枸杞果实韧皮部细胞的超微结构变化。结果表明:(1)随着枸杞果实的发育成熟,果实维管组织中的韧皮部筛分子筛域逐渐变宽,筛孔大而多,通过筛孔的物质运输十分活跃;筛分子和伴胞间有胞间连丝联系,伴胞属传递细胞类型,与其相邻韧皮薄壁细胞和果肉薄壁细胞连接处的细胞界面发生质膜内突,整个筛分子/伴胞复合体与韧皮薄壁细胞之间形成共质体隔离,韧皮部糖分的卸载方式主要以质外体途径进行。(2)韧皮薄壁细胞间的胞间连丝较多,而韧皮薄壁细胞与果肉薄壁细胞的胞间连丝相对较少,但果肉薄壁细胞间几乎无胞间连丝;果肉薄壁细胞之间胞间隙较大,细胞壁和质膜内突间形成较大的质外体空间,为质外体的糖分运输创造了条件。(3)筛管、伴胞、韧皮薄壁细胞和果肉薄壁细胞中丰富的囊泡以及活跃的囊泡运输现象,暗示囊泡也参与了果实糖分的运输过程。研究推测,枸杞果实韧皮部同化物的卸载方式以及卸载后的同化物运输主要以质外体途径为主。  相似文献   

5.
用透射电子显微技术研究了西瓜叶片小叶脉,结果表明,小叶脉是由大型维管束鞘细胞包围的维管束,维管束呈现大的头部和线形的柄部,柄部是单列细胞的木质部,由维管薄壁细胞和导管分子组成;头部是韧皮部,由维管薄壁细胞、伴胞和筛管分子组成。同一小叶脉内常见有超微结构特征显著不同的两种伴胞:一种伴胞体积小,与维管束鞘细胞接触面较小或不接触,细胞内有大液泡,细胞壁上没有胞间连丝或只有少数不分枝的胞间连丝,这种伴胞为2a型;另一种伴胞体积大,通常位于韧皮部两翼,不含大液泡而含大量小泡,与维管束鞘细胞接触面较大,接触面上有大量具分枝的胞间连丝,分枝部分比未分枝部分直径小,这种伴胞为中间细胞类型。显然,西瓜是小叶脉内兼具两种类型伴胞的植物。  相似文献   

6.
用透射电子显微技术研究了西瓜叶片小叶脉,结果表明,小叶脉是由大型维管束鞘细胞包围的维管束,维管束呈现大的头部和线形的柄部,柄部是单列细胞的木质部,由维管薄壁细胞和导管分子组成;头部是韧皮部,由维管薄壁细胞、伴胞和筛管分子组成。同一小叶脉内常见有超微结构特征显著不同的两种伴胞:一种伴胞体积小,与维管束鞘细胞接触面较小或不接触,细胞内有大液泡,细胞壁上没有胞间连丝或只有少数不分枝的胞间连丝,这种伴胞为2a型;另一种伴胞体积大,通常位于韧皮部两翼,不含大液泡而含大量小泡,与维管束鞘细胞接触面较大,接触面上有大量具分枝的胞间连丝,分枝部分比未分枝部分直径小,这种伴胞为中间细胞类型。显然,西瓜是小叶脉内兼具两种类型伴胞的植物。  相似文献   

7.
甘蔗叶不同部位ATP酶活性细胞化学定位   总被引:5,自引:0,他引:5  
甘蔗叶片,叶鞘和肥厚带韧皮部 ATP 酶活性定位于筛管、伴胞的质膜、内质网和某些伴胞细胞基质、小囊泡和发育成熟的液泡上;叶片韧皮部薄壁细胞、厚壁细胞和厚壁通道细胞质膜及小囊泡中亦显示有 ATP 水解产物;维管束鞘细咆与厚壁细胞或厚壁通道细胞所构成的细胞间隙上也存在有 ATP 酶活性反应产物沉淀。甘蔗叶片大、中、小三种维管束,从小维管束到大维管束,面向细胞间隙的细胞表面上的 ATP 酶活性逐渐增强,而维管束鞘细胞质膜上的 ATP 酶活性则趋于减弱;同一维管束内则以韧皮部细胞的 ATP 酶活性最强。维管束鞘细胞与叶肉细胞之间存在很多的胞间连丝,并表现出高的 ATP 酶活性。讨论了 ATP 酶活性的分布状态与叶肉细胞的光合产物向韧皮部运输的关系。  相似文献   

8.
运用常规ATP酶超微细胞化学定位技术,对宁夏枸杞果实发育不同阶段的韧皮部和果肉库薄壁细胞ATP酶分布进行了观察研究.结果显示,在果实发育过程中SE/CC复合体与周围韧皮薄壁细胞间存在共质体隔离,韧皮薄壁细胞及果肉库薄壁细胞的胞间连丝较少,但是与果肉库薄壁细胞相邻的韧皮薄壁细胞的胞间连丝较多.囊泡和膜泡在筛管、韧皮薄壁细胞和库薄壁细胞中很丰富,并且质膜、囊泡膜、液泡膜上ATP酶沉淀物在韧皮部各细胞分布较少,在果肉库薄壁细胞分布较多,特别是在果实第二次快速生长期,果肉库薄壁细胞膜系统、细胞壁和胞间隙的ATP酶活性剧烈增强.此外,果肉库薄壁细胞的质膜ATP酶具极性分布特点.由此得出,枸杞果实韧皮部卸载是一种需要能量驱动的过程,其卸载途径主要以质外体途径为主,在从韧皮部向果肉库薄壁细胞卸出时可能为共质体和质外体途径共存.膜泡运输是枸杞果实同化物卸出和转运的重要方式,而韧皮薄壁细胞在同化物卸出和转运过程中承担了主要转运角色;果肉库薄壁细胞进行主动和定向卸载、积累同化物的能力很强.  相似文献   

9.
为了解桑叶细脉中伴胞的超微结构,采用透射电子显微技术对桑叶细脉中伴胞进行观察,着重伴胞与相邻细胞界面上胞间连丝发生频率.结果表明,(1)伴胞含丰富细胞器,细胞壁光滑,无壁内突;(2)伴胞细胞壁上具有大量胞间连丝,胞间连丝通常聚集,并常发生分枝;(3)伴胞与不同类型细胞界面上的胞间连丝发生频率有差异,伴胞-维管束鞘细胞界面上发生频率为25.12±1.83个/μm2,伴胞-伴胞界面上20.18±1.7个2/μm2,伴胞-维管薄壁细胞界面上5.42±0.6个/μm2.基于上述观察,认为桑叶细脉中的伴胞属于1-2a型,韧皮部装载途径属于共质体类型.  相似文献   

10.
浙贝母鳞片细胞在寒冷条件下超微结构的变化   总被引:1,自引:0,他引:1  
高文远  李志亮  肖培根   《广西植物》1998,18(2):177-179
利用电镜手段观察了浙贝母鳞片细胞在寒冷条件下超微结构的变化。细胞中最明显的变化是出现了大量脂滴和淀粉粒壳的结构由清晰到模糊。一些高尔基体结构不清晰,内质网泡化。细胞中壁旁体较多,细胞核、细胞壁和胞间连丝正常。有时可见线粒体溢裂现象。以上现象表明为适应寒冷条件,细胞进行了内在代谢机制的调整。  相似文献   

11.
Modification of external morphology and internal structure of plants is a key feature of their successful survival in extreme habitats. They adapt to arid habitats not only by modifying their leaves, but also show several modifications in their conducting system. Therefore, the present study is aimed to investigate the pattern of secondary growth in Leptadenia pyrotechnica (Forssk.) Decne., (Asclepiadaceae), one such species growing in Kachchh district, an arid region of Gujarat State. A single ring of vascular cambium, responsible for radial growth, divided bidirectionally and formed the secondary xylem centripetally and the phloem centrifugally. After a short period of secondary xylem differentiation, small arcs of cambium began to form secondary phloem centripetally instead of secondary xylem. After a short duration of such secondary phloem formation, these segments of cambium resumed their normal function to produce secondary xylem internally. Thus, the phloem strands became embedded within the secondary xylem and formed interxylary phloem islands. Such a recurrent behavior of the vascular cambium resulted in the formation of several patches of interxylary phloem islands. In thick stems the earlier formed non-conducting interxylary phloem showed heavy accumulation of callose on the sieve plates followed by their crushing in response to the addition of new sieve elements. Development of intraxylary phloem is also observed from the cells situated on the pith margin. As secondary growth progresses further, small arcs of internal cambium get initiated between the protoxylem and intraxylary phloem. In the secondary xylem, some of the vessels are exceptionally thick-walled, which may be associated with dry habitats in order to protect the vessel from collapsing during the dryer part of the year. The inter- and intraxylary phloem may also be an adaptive feature to prevent the sieve elements to become non-conducting during summer when the temperature is much higher.  相似文献   

12.
Stem anatomy and development of medullary phloem are studied in the dwarf subshrub Cressa cretica L. (Convolvulaceae). The family Convolvulaceae is dominated by vines or woody climbers, which are characterized by the presence of successive cambia, medullary- and included phloem, internal cambium and presence of fibriform vessels. The main stems of the not winding C. cretica shows presence of medullary (internal) phloem, internal cambium and fibriform vessels, whereas successive cambia and included phloem are lacking. However, presence of fibriform vessels is an unique feature which so far has been reported only in climbing members of the family. Medullary phloem develops from peri-medullary cells after the initiation of secondary growth and completely occupies the pith region in fully grown mature plants. In young stems, the cortex is wide and formed of radial files of tightly packed small and large cells without intercellular air spaces. In thick stems, cortical cells become compressed due to the pressure developed by the radial expansion of secondary xylem, a feature actually common to halophytes. The stem diameter increases by the activity of a single ring of vascular cambium. The secondary xylem is composed of vessels (both wide and fibriform), fibres, axial parenchyma cells and uni-seriate rays. The secondary phloem consists of sieve elements, companion cells, axial and ray parenchyma cells. In consequence, Cressa shares anatomical characteristics of both climbing and non-climbing members. The structure of the secondary xylem is correlated with the habit and comparable with that of other climbing members of Convolvulaceae.  相似文献   

13.
The transport of assimilates from source to sink tissues is mediated by the phloem. Along the vascular system the phloem changes its physiological function from loading phloem to transport and unloading phloem. Sucrose carrier proteins have been identified in the transport phloem, but it is unclear whether the physiological role of these transporters is phloem unloading of sucrose or retrieval of apoplasmic sucrose back into the sieve element/companion cell complex. Here, we describe the dynamic expression of the Ricinus communis sucrose carrier RcSCR1 in the hypocotyl at different sink strengths. Our results indicate that phloem unloading in castor bean is not catalysed by the phloem loader RcSCR1. However, this sucrose carrier represents the molecular basis of the sucrose retrieval mechanism along the transport phloem, which is dynamically adjusted to the sink strength. As a consequence, we assume that other release carrier(s) exist in sink tissues, such as the hypocotyl, in R. communis.  相似文献   

14.
金松茎次生韧皮部的解剖   总被引:1,自引:0,他引:1  
在光学显微镜和扫描电子显微镜下,金松茎次生韧皮部的结构,主要特征为:(1)轴向系统由筛胞、韧皮薄壁组织细胞、蛋白质细胞及韧皮纤维组成;径向系统为单列,稀二列的韧皮射线构成。(2)筛胞径向壁上嵌埋有许多草酸钙结晶。(3)韧皮纤维仅一种类型,径向排列1—6个细胞宽的切向带,两带之间筛胞与韧皮薄壁组织细胞层数不规则。通过我们的研究结果,支持金松属可从杉科中分离出来成立金松科的主张。  相似文献   

15.
Sugar and amino acid transport into empty ovules of Pisum sativum L. cv. Marzia was examined. In fruits containing 4–6 developing seeds, the embryo was removed from four ovules. After this surgical treatment, each empty seed coat was filled with a solution (pH 5.5) containing a low (0, 50 or 200 m M ), medium (350, 400 or 500 m M ) or high (0.7 or 1 M ) concentration of sucrose and/or mannitol. In pulse-labelling experiments with sucrose and α-aminoisobutyric acid (AIB), transport of sucrose and AIB into an empty ovule filled with a solution containing a high sucrose concentration was the same as transport into an ovule filled with a mannitol solution of similar osmolarity, demonstrating that a high sucrose concentration in the seed coat apoplast affects phloem transport of sucrose and AIB into the seed coat only by the osmotic effect. The osmolarity of a given solution filling the seed coat cavity appeared to be important for phloem transport of sucrose and AIB into empty ovules.
In our experiments, 350 m M appeared to be the optimal concentration for sucrose and AIB transport into the cavity within an empty ovule, giving results comparable with transport into intact ovules. A lower osmolarity of the solution induced less transport. Very high sucrose or mannitol concentrations caused a strong inhibition of sucrose and AIB unloading from the seed coat, so that transport into the empty ovules was inhibited. A low (strongly negative) but not too low osmotic potential of the solution in the seed coat apoplast seems necessary to maintain a normal rate of phloem transport into developing seeds. Apparently, the "sink strength" of developing seeds is turgor-sensitive.  相似文献   

16.
The structure of the secondary phloem and the development of the crystaleiferous phloem fibers in the stem of Torrey grandis were observed under the ligth microscope and SEM. The secondary phloem is composed of sieve cells, phloem parenchyma cells, crystalliferous phloem fibers and stone cells in the longitudinal system, and the uniserite homogeneous phloem rays consisting of parenchyma cells only in the radial system. In the cross section, there are 3–9 sieve cells in radial rows forming discontinuous tangential layers, the crystalliferous phloem fibers often in a single discontinuous tangential layer and the stone cells dispersed in rangential layer of phloem parenchyma. The developmental process of crystalliferous phloem fibers is as follows: initial cells appeared in the end of April and were well differentiated in the first week of May. Some crystals were deposited in the primary wall, while others were free in the cell. At the end of May, the secondary wall of most crysalliferous phloem fibers started to be thickened. With the thickening of the secondary wall, all the crystals were embedded in the wall from June to August From the end of September to the early days of October, the crystalliferous phloem fibers reached their full maturation. It is shown by microchemical identification and EDAX analysis that the crystals embedded in the wail of crystalliferous phloem fibers are calcium oxalate crystals.  相似文献   

17.
Ipomoea hederifolia stems increase in thickness using a combination of different types of cambial variant, such as the discontinuous concentric rings of cambia, the development of included phloem, the reverse orientation of discontinuous cambial segments, the internal phloem, the formation of secondary xylem and phloem from the internal cambium, and differentiation of cork in the pith. After primary growth, the first ring of cambium arises between the external primary phloem and primary xylem, producing secondary phloem centrifugally and secondary xylem centripetally. The stem becomes lobed, flat, undulating, or irregular in shape as a result of the formation of both discontinuous and continuous concentric rings of cambia. As the formation of secondary xylem is greater in one region than in another, this results in the formation of a grooved stem. Successive cambia formed after the first ring are of two distinct functional types: (1) functionally normal successive cambia that divide to form secondary xylem centripetally and secondary phloem centrifugally, like other dicotyledons that show successive rings, and (2) abnormal cambia with reverse orientation. The former type of successive rings originates from the parenchyma cells located outside the phloem produced by previous cambium. The latter type of cambium develops from the conjunctive tissue located at the base of the secondary xylem formed by functionally normal cambia. This cambium is functionally inverted, producing secondary xylem centrifugally and secondary phloem centripetally. In later secondary growth, xylem parenchyma situated deep inside the secondary xylem undergoes de‐differentiation, and re‐differentiates into included phloem islands in secondary xylem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 30–40.  相似文献   

18.
During the past twenty years, reports in literature have indicated the increasing use of autoradiographic techniques in problems dealing with translocation of nutrients in the phloem. Now the patterns of movement of photosynthates in plants with collateral or bicollateral bundles are fairly well known. But this technique can still bring us a far better knowledge of other aspects of phloem physiology, such as mechanism of phloem loading for instance.  相似文献   

19.
D. R. Lee 《Planta》1981,151(4):304-308
Simultaneous measurement of the pressure potential of the phloem of F. americana made on two locations on the trunk over long periods of time showed synchronous oscillations of no fixed period during the day. The simultaneous changes in pressure in two different trees indicated environmental changes were responsible for the synchrony. The coincident changes of pressure 5 m apart on the same trunk implied that either transpiration had an immediate and direct effect upon the pressure potentials developed in the phloem because of the intimate relationship of the phloem water potential and the water potential of the adjacent transpiration stream, or factors affecting phloem loading resulted in pressure changes throughout the phloem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号