首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RNA ligands that bind to the human immunodeficiency virus type-1 (HIV-1) gag polyprotein with 10(-9) M affinity were isolated from a complex pool of RNAs using an in vitro selection method. The ligands bind to two different regions within gag, either to the matrix protein or to the nucleocapsid protein. Binding of a matrix ligand to gag did not interfere with the binding of a nucleocapsid ligand, and binding of a nucleocapsid ligand to gag did not interfere with the binding of a matrix ligand. However, binding of a nucleocapsid ligand to gag did interfere with binding of an RNA containing the HIV-1 RNA packaging element (psi), even though the sequence of the nucleocapsid ligand is not similar topsi. The minimal sequences required for the ligands to bind to matrix or nucleocapsid were determined. Minimal nucleocapsid ligands are predicted to form a stem-loop structure that has a self-complementary sequence at one end. Minimal matrix ligands are predicted to form a different stem-loop structure that has a CAARU loop sequence. The properties of these RNA ligands may provide tools for studying RNA interactions with matrix and nucleocapsid, and a novel method for inhibiting HIV replication.  相似文献   

3.
During infection with human cytomegalovirus (HCMV), cellular protein synthesis continues even as viral proteins are being synthesized in abundance. Thus, HCMV may have a mechanism for counteracting host cell antiviral pathways that act by shutting off translation. Consistent with this view, HCMV infection of human fibroblasts rescues the replication of a vaccinia virus mutant lacking the double-stranded RNA-binding protein gene E3L (VVdeltaE3L). HCMV also prevents the phosphorylation of the eukaryotic translation initiation factor eIF-2alpha, the activation of RNase L, and the shutoff of viral and cellular protein synthesis that otherwise result from VVdeltaE3L infection. To identify the HCMV gene(s) responsible for these effects, we prepared a library of VVdeltaE3L recombinants containing HCMV genomic fragments. By infecting nonpermissive cells with this library and screening for VV gene expression and replication, we isolated a virus containing a 2.8-kb HCMV fragment that rescues replication of VVdeltaE3L. The fragment comprises the 3' end of the J1S open reading frame through the entire TRS1 gene. Analyses of additional VVdeltaE3L recombinants revealed that the protein encoded by TRS1, pTRS1, as well as the closely related IRS1 gene, rescues VVdeltaE3L replication and prevent the shutoff of protein synthesis, the phosphorylation of eIF-2alpha, and activation of RNase L. These results demonstrate that TRS1 and IRS1 are able to counteract critical host cell antiviral response pathways.  相似文献   

4.
RNase P complexed with external guide sequence (EGS) represents a novel nucleic-acid-based gene interference approach to modulate gene expression. In this study, a functional EGS RNA was constructed to target the overlapping mRNA region of two human cytomegalovirus (HCMV) capsid proteins, the capsid scaffolding protein (CSP) and assemblin. The EGS RNA was shown to be able to direct human RNase P to cleave the target mRNA sequence efficiently in vitro. A reduction of approximately 75%-80% in the mRNA and protein expression levels of both CSP and assemblin and a reduction of 800-fold in viral growth were observed in human cells that expressed the functional EGS, but not in cells that either did not express the EGS or produced a "disabled" EGS that carried nucleotide mutations that precluded RNase P recognition. The action of the EGS is specific as the RNase P-mediated cleavage only reduces the expression of the CSP and assemblin but not other viral genes examined. Further studies of the antiviral effects of the EGS indicate that the expression of the functional EGS has no effect on HCMV genome replication but blocks viral capsid maturation, consistent with the notion that CSP and assemblin play essential roles in HCMV capsid formation. Our study provides the first direct evidence that EGS RNAs effectively inhibit HCMV gene expression and growth. Moreover, these results demonstrate the utility of EGS RNAs in gene therapy applications, including the treatment of HCMV infection by inhibiting the expression of virus-encoded essential proteins.  相似文献   

5.
M Lu  D E Draper 《Nucleic acids research》1995,23(17):3426-3433
Ribosomal protein L11 and an antibiotic, thiostrepton, bind to the same highly conserved region of large subunit ribosomal RNA and stabilize a set of NH4(+)-dependent tertiary interactions within the domain. In vitro selection from partially randomized pools of RNA sequences has been used to ask what aspects of RNA structure are recognized by the ligands. L11-selected RNAs showed little sequence variation over the entire 70 nucleotide randomized region, while thiostrepton required a slightly smaller 58 nucleotide domain. All the selected mutations preserved or stabilized the known secondary and tertiary structure of the RNA. L11-selected RNAs from a pool mutagenized only around a junction structure yielded a very different consensus sequence, in which the RNA tertiary structure was substantially destabilized and L11 binding was no longer dependent on NH4+. We propose that L11 can bind the RNA in two different 'modes', depending on the presence or absence of the NH4(+)-dependent tertiary structure, while thiostrepton can only recognize the RNA tertiary structure. The different RNA recognition mechanisms for the two ligands may be relevant to their different effects on protein synthesis.  相似文献   

6.
Previous work from our laboratory has suggested that topoisomerase II is required for replication of human cytomegalovirus (HCMV). In assays of confluent human embryonic lung cells infected with HCMV, topoisomerase II inhibitors exhibited an irreversible inhibition of viral DNA replication. However, Northern (RNA blot) and Western (immunoblot) analyses of confluent uninfected human embryonic lung cells detected very low levels of cellular topoisomerase II RNA and protein. Quantitation of human topoisomerase II RNA and protein levels at various times after HCMV infection revealed that HCMV induces increased intracellular levels of both topoisomerase II RNA and protein. Such accumulation began at early times of infection, continued through late in infection, and was not reduced by inhibition of viral DNA synthesis. This is the first report of such induction by a viral infection. Topoisomerase II was also detected in isolated HCMV virions.  相似文献   

7.
A sequence-specific ribozyme (M1GS RNA) derived from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the mRNA encoding human cytomegalovirus (HCMV) protease (PR), a viral protein that is responsible for the processing of the viral capsid assembly protein. We showed that the constructed ribozyme cleaved the PR mRNA sequence efficiently in vitro. Moreover, a reduction of about 80% in the expression level of the protease and a reduction of about 100-fold in HCMV growth were observed in cells that expressed the ribozyme stably. In contrast, a reduction of less than 10% in the expression of viral protease and viral growth was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Further examination of the antiviral effects of the ribozyme-mediated cleavage of PR mRNA indicates that (1) the proteolytic cleavage of the capsid assembly protein is inhibited significantly, and (2) the packaging of the viral genomic DNA into the CMV capsids is blocked. These observations are consistent with the notion that the protease functions to process the capsid assembly protein and is essential for viral capsid assembly. Moreover, our results indicate that the RNase P ribozyme-mediated cleavage specifically reduces the expression of the protease, but not other viral genes examined. Thus, M1GS ribozyme is highly effective in inhibiting HCMV growth by targeting the PR mRNA and may represent a novel class of general gene-targeting agents for the studies and treatment of infections caused by human viruses, including HCMV.  相似文献   

8.
A ribozyme (M1GS RNA) constructed from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the overlapping region of two human cytomegalovirus (HCMV) mRNAs, which encode for the viral essential protease (PR) and capsid assembly proteins (AP), respectively. The results show a reduction of >80% in the expression levels of PR and AP and an inhibition of approximately 2000-fold of viral growth in cells that stably expressed the ribozyme. In comparison, <10% reduction in the expression of the targets and viral growth was found in cells that either did not express the ribozyme or produced a "disabled" ribozyme carrying mutations that abolished its catalytic activity. Examination of replication of the virus in the ribozyme-expressing cells indicates that packaging of the viral genomic DNA into capsids is blocked, and suggests that the antiviral effects are because the ribozyme specifically inhibits the AP and PR expression and, consequently, abolishes viral capsid formation and growth. Our results show that RNase P ribozymes are highly effective in blocking HCMV growth by targeting the PR and AP mRNAs and demonstrate the feasibility to use these ribozymes in gene therapy for antiviral applications.  相似文献   

9.
Kim K  Trang P  Umamoto S  Hai R  Liu F 《Nucleic acids research》2004,32(11):3427-3434
By linking a guide sequence to the catalytic RNA subunit of RNase P (M1 RNA), we constructed a functional ribozyme (M1GS RNA) that targets the overlapping mRNA region of two human cytomegalovirus (HCMV) capsid proteins, the capsid scaffolding protein (CSP) and assemblin, which are essential for viral capsid formation. The ribozyme efficiently cleaved the target mRNA sequence in vitro. Moreover, a reduction of >85% in the expression of CSP and assemblin and a reduction of 4000-fold in viral growth were observed in the HCMV-infected cells that expressed the functional ribozyme. In contrast, there was no significant reduction in viral gene expression and growth in virus-infected cells that either did not express the ribozyme or produced a ‘disabled’ ribozyme carrying mutations that abolished its catalytic activity. Characterization of the effects of the ribozyme on the HCMV lytic replication cycle further indicates that the expression of the functional ribozyme specifically inhibits the expression of CSP and assemblin, and consequently blocks viral capsid formation and growth. Our results provide the direct evidence that RNase P ribozymes can be used as an effective gene-targeting agent for antiviral applications, including abolishing HCMV growth by blocking the expression of the virus-encoded capsid proteins.  相似文献   

10.
Hepatitis C virus (HCV)-encoded nonstructural protein 3 (NS3) possesses protease, NTPase, and helicase activities, which are considered essential for viral proliferation. Thus, HCV NS3 is a good putative therapeutic target protein for the development of anti-HCV agents. In this study, we isolated specific RNA aptamers to the helicase domain of HCV NS3 from a combinatorial RNA library with 40-nucleotide random sequences using in vitro selection techniques. The isolated RNAs were observed to very avidly bind the HCV helicase with an apparent Kd of 990 pM in contrast to original pool RNAs with a Kd of >1 microM. These RNA ligands appear to impede binding of substrate RNA to the HCV helicase and can act as potent decoys to competitively inhibit helicase activity with high efficiency compared with poly(U) or tRNA. The minimal binding domain of the ligands was determined to evaluate the structural features of the isolated RNA molecules. Interestingly, part of binding motif of the RNA aptamers consists of similar secondary structure to the 3'-end of HCV negative-strand RNA. Moreover, intracellular NS3 protein can be specifically detected in situ with the RNA aptamers, indicating that the selected RNAs are very specific to the HCV NS3 helicase. Furthermore, the RNA aptamers partially inhibited RNA synthesis of HCV subgenomic replicon in Huh-7 hepatoma cell lines. These results suggest that the RNA aptamers selected in vitro could be useful not only as therapeutic and diagnostic agents of HCV infection but also as a powerful tool for the study of HCV helicase mechanism.  相似文献   

11.
目的获得能够特异性高亲和力结合肝脏特异性去唾液酸糖蛋白受体(asialoglycoprotein receptor,ASGPR)的RNA适配子,为开发诊断和治疗肝脏疾病的靶向性试剂和药物奠定基础。方法合成一个长度为115nt含有25个随机序列的单链DNA随机文库,通过体外转录构建出单链RNA适配子随机文库,以肝脏ASGPR大亚基为靶蛋白,采用SELEX(systematic evolution of ligands by exponential enrichment)技术筛选具有高亲和力的AsGPR特异性RNA适配子;通过膜结合测定实验、凝胶阻滞实验鉴定筛选适配子对靶蛋白的特异性和亲和力。结果经过12轮筛选获得了具有高亲和力的肝脏ASGPR特异性RNA适配子。结论成功地筛选出了具有离亲和力的肝脏ASGPR特异性RNA适配子库。  相似文献   

12.
13.
14.
Dendritic cells (DCs) play a central role in instructing antiviral immune responses. DCs, however, can become targeted by different viruses themselves. We recently demonstrated that human DCs can be productively infected with echoviruses (EVs), but not coxsackie B viruses (CVBs), both of which are RNA viruses belonging to the Enterovirus genus of the Picornaviridae family. We now show that phagocytosis of CVB-infected, type I interferon-deficient cells induces an antiviral state in human DCs. Uptake of infected cells increased the expression of the cytoplasmic RNA helicases retinoic acid-inducible gene I and melanoma differentiation-associated gene 5 as well as other interferon-stimulated genes and protected DCs against subsequent infection with EV9. These effects depended on recognition of viral RNA and could be mimicked by exposure to the synthetic double-stranded RNA analogue poly(I:C) but not other Toll-like receptor (TLR) ligands. Blocking endosomal acidification abrogated protection, suggesting a role for TLRs in the acquisition of an antiviral state in DCs. In conclusion, recognition of viral RNA rapidly induces an antiviral state in human DCs. This might provide a mechanism by which DCs protect themselves against viruses when attracted to an environment with ongoing infection.  相似文献   

15.
16.
Trypanosoma cruzi causing Chagas' disease needs to invade host cells to complete its life cycle. Macromolecules on host cell surfaces such as laminin, thrombospondin, heparan sulfate, and fibronectin are believed to be important in mediating parasite-host cell adhesions and in the invasion process of the host cell by the parasite. The SELEX technique (systematic evolution of ligands by exponential enrichment) was used to evolve nuclease-resistant RNA ligands (aptamer = to fit) that bind with affinities of 40-400 nm to parasite receptors for the host cell matrix molecules laminin, fibronectin, thrombospondin, and heparan sulfate. After eight consecutive rounds of in vitro selection four classes of RNA aptamers based on structural similarities were isolated and sequenced. All members of each class shared a common sequence motif and competed with the respective host cell matrix molecule that was used for displacement during the selection procedure. RNA pools following seven and eight selection rounds as well as individual aptamers sharing consensus motifs were active in inhibiting invasion of LLC-MK(2) monkey kidney cells by T. cruzi in vitro.  相似文献   

17.
Export of unspliced mRNA to the cytoplasm is required for the replication of all retroviruses. In simian type D retroviruses, the RNA export is mediated by the constitutive transport element (CTE) that binds the cellular nuclear export factor 1, NXF1(TAP). To search for potential cellular RNA substrates for NXF1, we have set up an in vitro selection procedure, using an RNA library expressed from total human genomic DNA. A sequence that was isolated most frequently as independent clones exhibits extensive homology to the 3' untranslated region of expressed LINE1 (L1) retrotransposons. This region, termed L1-NXF1 binding element (L1-NBE) bears no structural resemblance to the viral CTE, but binds NXF1 as strongly as CTE, based on gel mobility shift competition assays. A deletion analysis of the NXF1 protein reveals that CTE and L1-NBE have different, but overlapping, binding domains on NXF1. Placed in an intron, L1-NBE is capable of mediating nuclear export of lariat RNA species in Xenopus laevis oocytes and of an unspliced HIV-1 derived RNA in human 293 cells, suggesting that it may function as a nuclear export element for the intronless L1 mRNA.  相似文献   

18.
RNA aptamers specific for bovine thrombin   总被引:4,自引:0,他引:4  
Bovine thrombin is widely used in clinical wound healing after surgery. There is 85% homology between bovine thrombin and human thrombin, so most antibodies against bovine thrombin cross-react with human thrombin. Rare antibodies against bovine thrombin but not cross-reacting with human thrombin have been reported. RNA ligands (aptamers) have been used to bind to target molecules with sometimes higher specificity than antibodies. Here we report the isolation of aptamers specific for bovine thrombin by systematic evolution of ligands by exponential enrichment (SELEX) from an RNA pool containing a 25-nucleotide randomized region. After seven rounds of selection, two aptamers specific for bovine thrombin were identified with a K(d) of 164 and 240 nM, respectively. Significantly, these aptamers do not bind to human thrombin. Secondary structure prediction revealed potential stem-loop structures for these RNAs. Both RNA aptamers inhibit only bovine thrombin-catalyzed fibrin clot formation in vitro. Competition assay results suggested that the RNA aptamers might bind to the electropositive domain of bovine thrombin, that is, heparin-binding site, instead of fibrinogen-recognition exosite. The resulting bovine-specific thrombin inhibitor might be used in some clinical applications when bovine thrombin activity needs to be contained or in research where human and bovine thrombin need to be distinguished.  相似文献   

19.
Hakki M  Geballe AP 《Journal of virology》2005,79(12):7311-7318
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes rescue replication of vaccinia virus (VV) that has a deletion of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). Like E3L, these HCMV genes block the activation of key interferon-induced, double-stranded RNA (dsRNA)-activated antiviral pathways. We investigated the hypothesis that the products of these HCMV genes act by binding to dsRNA. pTRS1 expressed by cell-free translation or by infection of mammalian cells with HCMV or recombinant VV bound to dsRNA. Competition experiments revealed that pTRS1 preferentially bound to dsRNA compared to double-stranded DNA or single-stranded RNA. 5'- and 3'-end deletion analyses mapped the TRS1 dsRNA-binding domain to amino acids 74 through 248, a region of identity to pIRS1 that contains no homology to known dsRNA-binding proteins. Deletion of the majority of this region (Delta86-246) completely abrogated dsRNA binding. To determine the role of the dsRNA-binding domain in the rescue of VVDeltaE3L replication, wild-type or deletion mutants of TRS1 were transfected into HeLa cells, which were then infected with VVDeltaE3L. While full-length TRS1 rescued VVDeltaE3L replication, deletion mutants affecting a carboxy-terminal region of TRS1 that is not required for dsRNA binding failed to rescue VVDeltaE3L. Analyses of stable cell lines revealed that the carboxy-terminal domain is necessary to prevent the shutoff of protein synthesis and the phosphorylation of eIF2alpha after VVDeltaE3L infection. Thus, pTRS1 contains an unconventional dsRNA-binding domain at its amino terminus, but a second function involving the carboxy terminus is also required for countering host cell antiviral responses.  相似文献   

20.
Restriction factors are potent antiviral proteins that constitute a first line of intracellular defense by blocking viral replication and spread. During co-evolution, however, viruses have developed antagonistic proteins to modulate or degrade the restriction factors of their host. To ensure the success of lytic replication, the herpesvirus human cytomegalovirus (HCMV) expresses the immediate-early protein IE1, which acts as an antagonist of antiviral, subnuclear structures termed PML nuclear bodies (PML-NBs). IE1 interacts directly with PML, the key protein of PML-NBs, through its core domain and disrupts the dot-like multiprotein complexes thereby abrogating the antiviral effects. Here we present the crystal structures of the human and rat cytomegalovirus core domain (IE1CORE). We found that IE1CORE domains, also including the previously characterized IE1CORE of rhesus CMV, form a distinct class of proteins that are characterized by a highly similar and unique tertiary fold and quaternary assembly. This contrasts to a marked amino acid sequence diversity suggesting that strong positive selection evolved a conserved fold, while immune selection pressure may have fostered sequence divergence of IE1. At the same time, we detected specific differences in the helix arrangements of primate versus rodent IE1CORE structures. Functional characterization revealed a conserved mechanism of PML-NB disruption, however, primate and rodent IE1 proteins were only effective in cells of the natural host species but not during cross-species infection. Remarkably, we observed that expression of HCMV IE1 allows rat cytomegalovirus replication in human cells. We conclude that cytomegaloviruses have evolved a distinct protein tertiary structure of IE1 to effectively bind and inactivate an important cellular restriction factor. Furthermore, our data show that the IE1 fold has been adapted to maximize the efficacy of PML targeting in a species-specific manner and support the concept that the PML-NBs-based intrinsic defense constitutes a barrier to cross-species transmission of HCMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号