首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The Vip3A protein, secreted by Bacillus spp. during the vegetative stage of growth, represents a new family of insecticidal proteins. In our investigation of the mode of action of Vip3A, the 88-kDa Vip3A full-length toxin (Vip3A-F) was proteolytically activated to an approximately 62-kDa core toxin either by trypsin (Vip3A-T) or lepidopteran gut juice extracts (Vip3A-G). Biotinylated Vip3A-G demonstrated competitive binding to lepidopteran midgut brush border membrane vesicles (BBMV). Furthermore, in ligand blotting experiments with BBMV from the tobacco hornworm, Manduca sexta (Linnaeus), activated Cry1Ab bound to 120-kDa aminopeptidase N (APN)-like and 250-kDa cadherin-like molecules, whereas Vip3A-G bound to 80-kDa and 100-kDa molecules which are distinct from the known Cry1Ab receptors. In addition, separate blotting experiments with Vip3A-G did not show binding to isolated Cry1A receptors, such as M. sexta APN protein, or a cadherin Cry1Ab ecto-binding domain. In voltage clamping assays with dissected midgut from the susceptible insect, M. sexta, Vip3A-G clearly formed pores, whereas Vip3A-F was incapable of pore formation. In the same assay, Vip3A-G was incapable of forming pores with larvae of the nonsusceptible insect, monarch butterfly, Danaus plexippus (Linnaeus). In planar lipid bilayers, both Vip3A-G and Vip3A-T formed stable ion channels in the absence of any receptors, supporting pore formation as an inherent property of Vip3A. Both Cry1Ab and Vip3A channels were voltage independent and highly cation selective; however, they differed considerably in their principal conductance state and cation specificity. The mode of action of Vip3A supports its use as a novel insecticidal agent.  相似文献   

2.
3.
Bacillus thuringiensis Cry2Ab toxin has been used in combination with Cry1Ac for resistance management on the Bt-cotton that is widely planted worldwide. However, little is known regarding Cry2Ab mode of action. Particularly, there is a gap of knowledge on the identification of insect midgut proteins that bind Cry2Ab and mediate toxicity. In the case of Cry1Ab toxin, a transmembrane cadherin protein and glycosyl-phosphatidylinositol (GPI) anchored proteins like aminopeptidase-N1 (APN1) or alkaline-phosphatase (ALP) from Manduca sexta, have been shown to be important for oligomer formation and insertion into the membrane. Binding competition experiments showed that Cry2Ab toxin does not share binding sites with Cry1Ab toxin in M. sexta brush border membrane vesicles (BBMV). Also, that Cry2Ab shows reduced binding to the Cry1Ab binding molecules cadherin, APN1 or ALP. Finally, ligand blot experiments and protein sequence by LC–MS/MS identified APN2 isoform as a Cry2Ab binding protein. Cloning and expression of APN2 confirmed that APN2 is a Cry2Ab binding protein.  相似文献   

4.
Helicoverpa armigera is one of the most harmful pests in China. Although it had been successfully controlled by Cry1A toxins, some H. armigera populations are building up resistance to Cry1A toxins in the laboratory. Vip3A, secreted by Bacillus thuringiensis, is another potential toxin against H. armigera. Previous reports showed that activated Vip3A performs its function by inserting into the midgut brush border membrane vesicles (BBMV) of susceptible insects. To further investigate the binding of Vip3A to BBMV of H. armigera, the full-length Vip3Aa10 toxin expressed in Escherichia coli was digested by trypsin or midgut juice extract, respectively. Among the fragments of digested Vip3Aa10, only a 62 kDa fragment (Vip3Aa10-T) exhibited binding to BBMV of H. armigera and has insecticidal activity. Moreover, this interaction was specific and was not affected by the presence of Cry1Ab toxin. Binding of Vip3Aa10-T to BBMV resulted in the formation of an ion channel. Unlike Cry1A toxins, Vip3Aa10-T was just slightly associated with lipid rafts of BBMV. These data suggest that although activated Vip3Aa10 specifically interacts with BBMV of H. armigera and forms an ion channel, the mode of action of it may be different from that of Cry1A toxins.  相似文献   

5.
Bacillus thuringiensis Cry toxins are used worldwide as insecticides in agriculture, in forestry, and in the control of disease transmission vectors. In the lepidopteran Manduca sexta, cadherin (Bt-R1) and aminopeptidase-N (APN) function as Cry1A toxin receptors. The interaction with Bt-R1 promotes cleavage of the amino-terminal end, including helix α-1 and formation of prepore oligomer that binds to APN, leading to membrane insertion and pore formation. Loops of domain II of Cry1Ab toxin are involved in receptor interaction. Here we show that Cry1Ab mutants located in domain II loop 3 are affected in binding to both receptors and toxicity against Manduca sexta larvae. Interaction with both receptors depends on the oligomeric state of the toxin. Monomers of loop 3 mutants were affected in binding to APN and to a cadherin fragment corresponding to cadherin repeat 12 but not with a fragment comprising cadherin repeats 7–12. In contrast, the oligomers of loop 3 mutants were affected in binding to both Bt-R1 fragments but not to APN. Toxicity assays showed that either monomeric or oligomeric structures of Cry1Ab loop 3 mutations were severely affected in insecticidal activity. These data suggest that loop 3 is differentially involved in the binding with both receptor molecules, depending on the oligomeric state of the toxin and also that possibly a “ping pong” binding mechanism with both receptors is involved in toxin action.  相似文献   

6.
The binding properties of Vip3A, a new family of Bacillus thuringiensis insecticidal toxins, have been examined in the major cotton pests, Heliothis virescens and Helicoverpa zea. Vip3A bound specifically to brush border membrane vesicles (BBMV) prepared from both insect larval midguts. In order to examine the cross-resistance potential of Vip3A to the commercially available Cry1Ac and Cry2Ab2 toxins, the membrane binding site relationship among these toxins was investigated. Competition binding assays demonstrated that Vip3A does not inhibit the binding of either Cry1Ac or Cry2Ab2 and vice versa. BBMV protein blotting experiments showed that Vip3A does not bind to the known Cry1Ac receptors. These distinct binding properties and the unique protein sequence of Vip3A support its use as a novel insecticidal agent. This study indicates a very low cross-resistance potential between Vip3A and currently deployed Cry toxins and hence supports its use in an effective resistance management strategy in cotton.  相似文献   

7.
Bacillus thuringiensis vegetative insecticidal proteins (Vip3A) have been recently introduced in important crops as a strategy to delay the emerging resistance to the existing Cry toxins. The mode of action of Vip3A proteins has been studied in Spodoptera frugiperda with the aim of characterizing their binding to the insect midgut. Immunofluorescence histological localization of Vip3Aa in the midgut of intoxicated larvae showed that Vip3Aa bound to the brush border membrane along the entire apical surface. The presence of fluorescence in the cytoplasm of epithelial cells seems to suggest internalization of Vip3Aa or a fragment of it. Successful radiolabeling and optimization of the binding protocol for the 125I-Vip3Aa to S. frugiperda brush border membrane vesicles (BBMV) allowed the determination of binding parameters of Vip3A proteins for the first time. Heterologous competition using Vip3Ad, Vip3Ae, and Vip3Af as competitor proteins showed that they share the same binding site with Vip3Aa. In contrast, when using Cry1Ab and Cry1Ac as competitors, no competitive binding was observed, which makes them appropriate candidates to be used in combination with Vip3A proteins in transgenic crops.  相似文献   

8.
Zhang R  Hua G  Andacht TM  Adang MJ 《Biochemistry》2008,47(43):11263-11272
Bacillus thuringiensis (Bt) insecticidal toxins bind to receptors on midgut epithelial cells of susceptible insects, and binding triggers biochemical events that lead to insect mortality. Recently, a 100-kDa aminopeptidase N (APN) was isolated from brush border membrane vesicles (BBMV) of Anopheles quadrimaculatus and shown to bind Cry11Ba toxin with surface plasmon resonance (SPR) detection [Abdullah et al. (2006) BMC Biochem. 7, 16]. In our study, a 106-kDa APN, called AgAPN2, released by phosphatidylinositol-specific phospholipase C (PI-PLC) from Anopheles gambiae BBMV was extracted by Cry11Ba bound to beads. The AgAPN2 cDNA was cloned, and analysis of the predicted AgAPN2 protein revealed a zinc-binding motif (HEIAH), three potential N-glycosylation sites, and a predicted glycosylphosphatidylinositol (GPI) anchor site. Immunohistochemistry localized AgAPN2 to the microvilli of the posterior midgut. A 70-kDa fragment of the 106-kDa APN was expressed in Escherichia coli. When purified, it competitively displaced 125I-Cry11Ba binding to An. gambiae BBMV and bound Cry11Ba on dot blot and microtiter plate binding assays with a calculated K d of 6.4 nM. Notably, this truncated peptide inhibited Cry11Ba toxicity to An. gambiae larvae. These results are evidence that the 106-kDa GPI-anchored APN is a specific binding protein, and a putative midgut receptor, for Bt Cry11Ba toxin.  相似文献   

9.
10.
Aminopeptidase N (APN) isoforms from Lepidoptera are known for their involvement in the mode of action of insecticidal Cry proteins from Bacillus thuringiensis. These enzymes belong to a protein family with at least eight different members that are expressed simultaneously in the midgut of lepidopteran larvae. Here, we focus on the characterization of the APNs from Ostrinia nubilalis (OnAPNs) to identify potential Cry receptors. We expressed OnAPNs in insect cells using a baculovirus system and analyzed their enzymatic activity by probing substrate specificity and inhibitor susceptibility. The interaction with Cry1Ab and Cry1Fa proteins (both found in transgenic insect-resistant maize) was evaluated by ligand blot assays and immunocytochemistry. Ligand blots of brush border membrane proteins showed that both Cry proteins bound mainly to a 150 kDa-band, in which OnAPNs were greatly represented. Binding analysis of Cry proteins to the cell-expressed OnAPNs showed that OnAPN1 interacted with both Cry1Ab and Cry1Fa, whereas OnAPN3a and OnAPN8 only bound to Cry1Fa. Two isoforms, OnAPN2 and OnAPN3b, did not interact with any of these two proteins. This work provides the first evidence of a differential role of OnAPN isoforms in the mode of action of Cry proteins in O. nubilalis.  相似文献   

11.
Tobacco hornworm, Manduca sexta, is a model insect for studying the action of Bacillus thuringiensis (Bt) Cry toxins on lepidopterans. The proteins, which bind Bt toxins to midgut epithelial cells, are key factors involved in the insecticidal functions of the toxins. Three Cry1A-binding proteins, viz., aminopeptidase N (APN), the cadherin-like Bt-R1, and membrane-type alkaline phosphatase (m-ALP), were localized, by immunohistochemistry, in sections from the anterior, middle, and posterior regions of the midgut from second instar M. sexta larvae. Both APN and m-ALP were distributed predominantly along microvilli in the posterior region and to a lesser extent on the apical tip of microvilli in the anterior and middle regions. Bt-R1 was localized at the base of microvilli in the anterior region, over the entire microvilli in the middle region, and at both the apex and base of microvilli in the posterior region. The localization of rhodamine-labeled Cry1Aa, Cry1Ab, and Cry1Ac binding was determined on sections from the same midgut regions. Cry1Aa and Cry1Ab bound to the apical tip of microvilli almost equally in all midgut regions. Binding of Cry1Ac was much stronger in the posterior region than in the anterior and middle regions. Thus, binding sites for Bt proteins and Cry1A toxins are co-localized on the microvilli of M. sexta midgut epithelial cells.  相似文献   

12.
The bacterium Bacillus thuringiensis produces, at the vegetative stage of its growth, Vip3A proteins with activity against a broad spectrum of lepidopteran insects. The Egyptian cotton leaf worm (Spodoptera littoralis) is an important agricultural pest that is susceptible to the Vip3Aa16 protein of Bacillus thuringiensis kurstaki strain BUPM95. The midgut histopathology of Vip3Aa fed larvae showed vacuolization of the cytoplasm, brush border membrane destruction, vesicle formation in the apical region and cellular disintegration. Biotinylated Vip3Aa toxin bound proteins of 55- and 100-kDa on blots of S. littoralis brush border membrane preparations. These binding proteins differ in molecular size from those recognized by Cry1C, one of the very few Cry proteins active against the polyphagous S. littoralis. This result supports the use of Vip3Aa16 proteins as insecticidal agent, especially in case of Cry-resistance management.  相似文献   

13.
To understand the low toxicity of Cry toxins in planthoppers, proteolytic activation of Cry1Ab in Nilaparvata lugens was studied. The proteolytic processing of Cry1Ab protoxin by N. lugens midgut proteases was similar to that by trypsin activated Cry1Ab. The Cry1Ab processed with N. lugens midgut proteases was highly insecticidal against Plutella xylostella. However, Cry1Ab activated either by trypsin or the gut proteases of the brown planthopper showed low toxicity in N. lugens. Binding analysis showed that activated Cry1Ab bound to brush border membrane vesicles (BBMV) from N. lugens at a significantly lower level than to BBMV from P. xylostella.  相似文献   

14.

Background

Bacillus thuringiensis (Bt) Cry34Ab1/Cry35Ab1 are binary insecticidal proteins that are co-expressed in transgenic corn hybrids for control of western corn rootworm, Diabrotica virgifera virgifera LeConte. Bt crystal (Cry) proteins with limited potential for field-relevant cross-resistance are used in combination, along with non-transgenic corn refuges, as a strategy to delay development of resistant rootworm populations. Differences in insect midgut membrane binding site interactions are one line of evidence that Bt protein mechanisms of action differ and that the probability of receptor-mediated cross-resistance is low.

Methodology/Principal Findings

Binding site interactions were investigated between Cry34Ab1/Cry35Ab1 and coleopteran active insecticidal proteins Cry3Aa, Cry6Aa, and Cry8Ba on western corn rootworm midgut brush border membrane vesicles (BBMV). Competitive binding of radio-labeled proteins to western corn rootworm BBMV was used as a measure of shared binding sites. Our work shows that 125I-Cry35Ab1 binds to rootworm BBMV, Cry34Ab1 enhances 125I-Cry35Ab1 specific binding, and that 125I-Cry35Ab1 with or without unlabeled Cry34Ab1 does not share binding sites with Cry3Aa, Cry6Aa, or Cry8Ba. Two primary lines of evidence presented here support the lack of shared binding sites between Cry34Ab1/Cry35Ab1 and the aforementioned proteins: 1) No competitive binding to rootworm BBMV was observed for competitor proteins when used in excess with 125I-Cry35Ab1 alone or combined with unlabeled Cry34Ab1, and 2) No competitive binding to rootworm BBMV was observed for unlabeled Cry34Ab1 and Cry35Ab1, or a combination of the two, when used in excess with 125I-Cry3Aa, or 125I-Cry8Ba.

Conclusions/Significance

Combining two or more insecticidal proteins active against the same target pest is one tactic to delay the onset of resistance to either protein. We conclude that Cry34Ab1/Cry35Ab1 are compatible with Cry3Aa, Cry6Aa, or Cry8Ba for deployment as insect resistance management pyramids for in-plant control of western corn rootworm.  相似文献   

15.
The interaction between Bacillus thuringiensis insecticidal crystal protein Cry1A and cadherin receptors in lepidopteran insects induces toxin oligomerization, which is essential for membrane insertion and mediates Cry1A toxicity. It has been reported that Manduca sexta cadherin fragment CR12-MPED and Anopheles gambiae cadherin fragment CR11-MPED enhance the insecticidal activity of Cry1Ab and Cry4Ba to certain lepidopteran and dipteran larvae species, respectively. This study reports that a Helicoverpa armigera cadherin fragment (HaCad1) containing its toxin binding region, expressed in Escherichia coli, enhanced Cry1Ac activity against H. armigera larvae. A binding assay showed that HaCad1 was able to bind to Cry1Ac in vitro and that this event did not block toxin binding to the brush border membrane microvilli prepared from H. armigera. When the residues 1423GVLSLNFQ1430 were deleted from the fragment, the subsequent mutation peptide lost its ability to bind Cry1Ac and the toxicity enhancement was also significantly reduced. Oligomerization tests showed that HaCad1 facilitates the formation of a 250-kDa oligomer of Cry1Ac-activated toxin in the midgut fluid environment. Oligomer formation was dependent upon the toxin binding to HaCad1, which was also necessary for the HaCad1-mediated enhancement effect. Our discovery reveals a novel strategy to enhance insecticidal activity or to overcome the resistance of insects to B. thuringiensis toxin-based biopesticides and transgenic crops.  相似文献   

16.
Transgenic corn expressing the Bacillus thuringiensis Cry1Ab gene is highly insecticidal to Ostrinia nubilalis (European corn borer) larvae. We ascertained whether Cry1F, Cry9C, or Cry9E recognizes the Cry1Ab binding site on the O. nubilalis brush border by three approaches. An optical biosensor technology based on surface plasmon resonance measured binding of brush border membrane vesicles (BBMV) injected over a surface of immobilized Cry toxin. Preincubation with Cry1Ab reduced BBMV binding to immobilized Cry1Ab, whereas preincubation with Cry1F, Cry9C, or Cry9E did not inhibit BBMV binding. BBMV binding to a Cry1F-coated surface was reduced when vesicles were preincubated in Cry1F or Cry1Ab but not Cry9C or Cry9E. A radioligand approach measured 125I-Cry1Ab toxin binding to BBMV in the presence of homologous (Cry1Ab) and heterologous (Cry1Ac, Cry1F, Cry9C, or Cry9E) toxins. Unlabeled Cry1Ac effectively competed for 125I-Cry1Ab binding in a manner comparable to Cry1Ab itself. Unlabeled Cry9C and Cry9E toxins did not inhibit 125I-Cry1Ab binding to BBMV. Cry1F inhibited 125I-Cry1Ab binding at concentrations greater than 500 nM. Cry1F had low-level affinity for the Cry1Ab binding site. Ligand blot analysis identified Cry1Ab, Cry1Ac, and Cry1F binding proteins in BBMV. The major Cry1Ab signals on ligand blots were at 145 kDa and 154 kDa, but a strong signal was present at 220 kDa and a weak signal was present at 167 kDa. Cry1Ac and Cry1F binding proteins were detected at 220 and 154 kDa. Anti-Manduca sexta aminopeptidase serum recognized proteins of 145, 154, and 167 kDa, and anti-cadherin serum recognized the 220 kDa protein. We speculate that isoforms of aminopeptidase and cadherin in the brush border membrane serve as Cry1Ab, Cry1Ac, and Cry1F binding proteins.  相似文献   

17.
The identity of the physiologically important Cry1A receptor protein(s) in the lepidopteran Manduca sexta has been a matter of dispute due to the multiple proteins which bind the Cry1Ac toxin. Cry1Aa, Cry1Ab, and Cry1Ac exhibit essentially identical toxicities toward M. sexta larvae and show a high degree of sequence and presumed structural identities. These similarities make it likely that there is a common mechanism of toxicity in these lepidopteran-specific toxins in terms of both mode of action and the receptor proteins through which these toxins exert their lepidopteran-specific toxicity. Investigators in our laboratory previously demonstrated that the cloned 210-kDa glycoprotein BT-R1 binds all three Cry1A toxins (T. P. Keeton and L. A. Bulla, Jr., Appl. Environ. Microbiol. 63:3419–3425, 1997). This protein remains a common binding protein even after being subjected to various midgut membrane preparation and processing protocols. The method used to isolate proteins from the M. sexta larval midgut in no significant way affects the results of ligand binding and vacuum blotting experiments, and we have been unable to detect specific, high-affinity binding of any Cry1A toxin to Cry1Ac binding proteins other than BT-R1. Alterations in blot substrate and blocking, hybridization, and washing buffers support these conclusions. Collectively, these results indicate that in M. sexta the cadherin-like BT-R1 protein is a common high-affinity receptor protein for the Cry1A family of toxins.  相似文献   

18.
Bacillus thuringiensis (Bt) insecticidal toxins have been globally utilized for control of agricultural insects through spraying or transgenic crops. Binding of Bt toxins to special receptors on midgut epithelial cells of target insects is a key step in the mode of action. Previous studies suggested aminopeptidase N1 (APN1) as a receptor or putative receptor in several lepidopteran insects including Helicoverpa armigera through evidence from RNA interefence‐based gene silencing approaches. In the current study we tested the role of APNs in the mode of action of Bt toxins using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR‐associated protein 9‐mediated gene knockout. Three APN genes (HaAPN1, HaAPN2 and HaAPN5) were individually knocked out in a susceptible strain (SCD) of H. armigera to establish three homozygous knockout strains. Qualitative in vitro binding studies indicated binding of Cry1Ac or Cry2Ab to midgut brush border membrane vesicles was not obviously affected by APN knockout. Bioassay results showed that none of the three knockouts had significant changes in susceptibility to Cry1A or Cry2A toxins when compared with the SCD strain. This suggests that the three HaAPN genes we tested may not be critical in the mode of action of Cry1A or Cry2A toxins in H. armigera.  相似文献   

19.
分离和鉴定二化螟Chilo suppresalis幼虫中肠刷状缘膜囊泡(BBMV)中Cry1A毒素的受体蛋白,对于阐明Cry1A毒素作用机理和二化螟抗性机理具有十分重要的意义。为此,本文就Cry1A毒素对二化螟杀虫活性及Cry1Ac与二化螟中肠受体的配基结合进行了研究。结果表明: Cry1Ab对二化螟室内品系(CN)的毒力高于Cry1Ac,而Cry1Ac高于Cry1Aa。配基结合分析表明二化螟CN品系幼虫中肠BBMV中有6个Cry1Ac结合蛋白(分子量分别为50,70,90,120,160和180 kDa), 其中180,160和90 kDa结合蛋白的条带颜色明显深于其他结合蛋白的条带,表明这3个受体蛋白具有较高的结合浓度。同源竞争结合研究表明,180和90 kDa结合蛋白为Cry1Ac的低亲合性结合蛋白,其他4个为高亲合性结合蛋白。为了研究Cry1Ac和Cry1Ab受体结合部位的相互作用,进行了异源竞争结合研究。Cry1Ab可以与Cry1Ac所有的6个结合蛋白进行竞争性结合,与180,120,70和50 kDa结合蛋白具有高亲合性,而与160和90 kDa结合蛋白具有低亲合性。结果显示,Cry1Ac与Cry1Ab在二化螟幼虫中肠BBMV上拥有多个共享的结合位点,但对每个结合位点的亲合性有差异。基于毒素结合部位的相似性,Cry1Ac和Cry1Ab不宜同时用于转基因Bt水稻来控制二化螟。  相似文献   

20.
Five economically important crop pests, Manduca sexta, Pieris brassicae, Mamestra brassicae, Spodoptera exigua, and Agrotis ipsilon, were tested at two stages of larval development for susceptibility to Bacillus thuringiensis toxins Cry1Ac, Cry1Ca, Cry1J, and Cry1Ba. Bioassay results for M. sexta showed that resistance to all four Cry toxins increased from the neonate stage to the third-instar stage; the increase in resistance was most dramatic for Cry1Ac, the potency of which decreased 37-fold. More subtle increases in resistance during larval development were seen in M. brassicae for Cry1Ca and in P. brassicae for Cry1Ac and Cry1J. By contrast, the sensitivity of S. exigua did not change during development. At both larval stages, A. ipsilon was resistant to all four toxins. Because aminopeptidase N (APN) is a putative Cry1 toxin binding protein, APN activity was measured in neonate and third-instar brush border membrane vesicles (BBMV). With the exception of S. exigua, APN activity was found to be significantly lower in neonates than in third-instar larvae and thus inversely correlated with increased resistance during larval development. The binding characteristics of iodinated Cry1 toxins were determined for neonate and third-instar BBMV. In M. sexta, the increased resistance to Cry1Ac and Cry1Ba during larval development was positively correlated with fewer binding sites in third-instar BBMV than in neonate BBMV. The other species-instar-toxin combinations did not reveal positive correlations between potency and binding characteristics. The correlation between binding and potency was inconsistent for the species-instar-toxin combinations used in this study, reaffirming the complex mode of action of Cry1 toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号