首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spores of a strain of Bacillus subtilis in which ftsZ was under the control of the spac promoter were allowed to germinate and grow out in the presence of increasing concentrations of isopropyl-beta-D-thiogalactopyranoside (IPTG). Over the IPTG concentration range of 0 to 10(-3) M, the level of FtsZ from the time when the first nucleoid segregations were occurring, measured in Western blot (immunoblot) transfer experiments, varied between 15 and 100% of that in the wild type. Septation was completely blocked (for at least several hours) when the amount of FtsZ was < 30% of the wild-type level. At all levels of ftsZ induction, the timing and rate of segregation of nucleoids following the first round of replication were unaltered. It is concluded that FtsZ has no direct role in nucleoid segregation in this situation.  相似文献   

2.
3.
Spores of the thermophilic, acidophilic, Bacillus acidocaldarius were covered by a thick outer coat and a laminated inner coat (5.5 nm periodicity). Small membranous vesicles were present in the spore core and they disappeared as germination proceeded. After depolymerization of the cortex, and a 30% increase in spore diameter, a localized gap appeared in the laminated inner coat only. This inner coat gap was narrow and could be the whole length of the spore. The germ cell appeared to grow, or to be pushed towards the inner coat gap, at which stage the outer coat disappeared in the same localized area. As the vegetative cell grew out the spore coat fell away, with loose cortical material still attached to it. The young germ cell developed a large spherical electron dense inclusion body in the cytoplasm, at the same time as the ribosomal and nuclear areas became distinct.  相似文献   

4.
5.
Spores of the thermophilic, acidophilic, Bacillus acidocaldarius were covered by a thick outer coat and a laminated inner coat (5.5 nm periodicity). Small membranous vesicles were present in the spore core and they disappeared as germination proceeded. After depolymerization of the cortex, and a 30% increase in spore diameter a localized gap appeared in the laminated inner coat only. This inner coat gap was narrow and could be the whole length of the spore. The germ cell appeared to grow, or to be pushed towards the inner coat gap, at which stage the outer coat disappeared in the same localized area. As the vegetative cell grew out the spore coat fell away, with loose cortical material still attached to it. The young germ cell developed a large spherical electron dense inclusion body in the cytoplasm, at the same time as the ribosomal and nuclear areas became distinct.  相似文献   

6.
7.
Both a salt-dependent form and an active form of glucose dehydrogenase [EC 1.1.1.47] were isolated from germinated spores of Bacillus subtilis disrupted in deionized water and 100 mM phosphate buffer (pH 6.6), and most of the enzyme isolated from young vegetative cells was the active form regardless of the conditions for breakage by sonication. The molecular weight of the salt-dependent form of the enzyme was about 55,000 and that of the active form was about 120,000. From the above results and the results on the glucose dehydrogenase extracted from resting spores disrupted in deionized water and 100 mM phosphate buffer (pH 6.6) reported in a previous paper, we propose that glucose dehydrogenase is present in resting spores as a monomeric form and is activated with association in vivo during germination and outgrowth.  相似文献   

8.
The effect of visible radiations on the germination and outgrowth of spores of Bacillus subtilis MD2 and Bacillus subtilis var. niger was determined by direct observation of populations irradiated on the surface of nutrient agar. Little effect on germination (phase darkening) was found but white light prevented outgrowth of some and retarded it for all spores. Different wavebands in the visible spectrum differed in their effect on outgrowth, the greatest retardation being found for the shorter wavelengths, 410–570 nm. Outgrowth in dark controls was always greater both in number of spores outgrown and rate of outgrowth. The results are consistent with others, suggesting an effect of singlet oxygen generated from endogenous photosensitizers by visible radiation.  相似文献   

9.
10.
Variable germination and outgrowth occurred when Bacillus subtilis NCTC 8236 spores were inoculated into nutrient broth prepared with distilled water. More reproducible findings were achieved when the medium was prepared with Elgastat water and the greatest reproducibility occurred with Elgastat water as vehicle combined with a rigorous acid-washing of all glassware. This combined procedure also produced optimum and reproducible results for the synchronous growth of two B. subtilis 168 strains in casein medium supplemented with appropriate amino acids, a technique of value in monitoring the development of resistance to antibacterial agents during sporulation. The levels of aluminium in distilled water were higher than those of other elements; however, the incorporation of aluminium sulphate into broth prepared with Elgastat water had no effect on germination, and outgrowth was reduced (but not eliminated) only at high concentrations of this salt.  相似文献   

11.
12.
13.
When heat-activated spores of Bacillus megaterium germinated in glucose-containing medium, 10 to 30% of the glucose was found to be oxidized to gluconate.  相似文献   

14.
We have confirmed the finding of Murray et al. [Lett Appl Microbiol 1: 63–65, 1985] that most of theBacillus brevis spores undergoing the gramicidin S-delayed outgrowth stage of germination are killed by gramicidin S, the antibiotic produced during sporulation. We found, however, that 1% of the population resists this suicidal event even when high concentrations of gramicidin S are added and outgrowth is further delayed. It is obviously this small fraction of the population which, at the end of the long outgrowth stage, develops into vegetative cells. Previous work indicates that this minor population is not genetically resistant to gramicidin S. We conclude that the long delay in germination outgrowth is brought about by two effects of gramicidin S: (1) killing; and (2) decreasing the rate of one or more of the cellular metabolic activities necessary for outgrowth.  相似文献   

15.
When spores of Bacillus megaterium ATCC 12872 were incubated with CdCl2, they germinated without decomposition of the cortex. Moreover, the volume ratio of cortex to protoplast-plus-cortex, C/(P+C), of the CdCl2-germinated spores was reduced. Incubation of isolated cortex with the divalent compounds Cd2+, Ca2+, and Mg2+ reduced the gel volume to about 1/5 but incubation with a nonionic compounds, glucose, did not. The spores with reduced C/(P+C) were observed in the early period of glucose-induced germination. The time required for a 50% change in cortex morphology to occur was 2.5 min, which corresponds well with the time for 50% loss of heat resistance. This time was shorter than that necessary for release of peptidoglycan fragments and hydrolysis of cortex glycan chains. These data indicate that cortex hydrolysis is not related to the initiation of germination. 50% of the dipicolinic acid, calcium and magnesium were released at 3.4, 4.0, and 2.4 min, respectively. These results suggest that collapse of cortex expansion by the interaction of cortex with dipicolinic acid and cations released from the core, or exogenous ionic germinants is an important step in the initiation of germination.  相似文献   

16.
AIMS: To determine the mechanism of action of inhibitors of the germination of spores of Bacillus species, and where these inhibitors act in the germination process. METHODS AND RESULTS: Spores of various Bacillus species are significant agents of food spoilage and food-borne disease, and inhibition of spore germination is a potential means of reducing such problems. Germination of the following spores was studied: (i) wild-type B. subtilis spores; (ii) B. subtilis spores with a nutrient receptor variant allowing recognition of a novel germinant; (iii) B. subtilis spores with elevated levels of either the variant nutrient receptor or its wild-type allele; (iv) B. subtilis spores lacking all nutrient receptors and (v) wild-type B. megaterium spores. Spores were germinated with a variety of nutrient germinants, Ca2+-dipicolinic acid (DPA) and dodecylamine for B. subtilis spores, and KBr for B. megaterium spores. Compounds tested as inhibitors of germination included alkyl alcohols, a phenol derivative, a fatty acid, ion channel blockers, enzyme inhibitors and several other compounds. Assays used to assess rates of spore germination monitored: (i) the fall in optical density at 600 nm of spore suspensions; (ii) the release of the dormant spore's large depot of DPA; (iii) hydrolysis of the dormant spore's peptidoglycan cortex and (iv) generation of CFU from spores that lacked all nutrient receptors. The results with B. subtilis spores allowed the assignment of inhibitory compounds into two general groups: (i) those that inhibited the action of, or response to, one nutrient receptor and (ii) those that blocked the action of, or response to, several or all of the nutrient receptors. Some of the compounds in groups 1 and 2 also blocked action of at least one cortex lytic enzyme, however, this does not appear to be the primary site of their action in inhibiting spore germination. The inhibitors had rather different effects on germination of B. subtilis spores with nutrients or non-nutrients, consistent with previous work indicating that germination of B. subtilis spores by non-nutrients does not involve the spore's nutrient receptors. In particular, none of the compounds tested inhibited spore germination with dodecylamine, and only three compounds inhibited Ca2+-DPA germination. In contrast, all compounds had very similar effects on the germination of B. megaterium spores with either glucose or KBr. The effects of the inhibitors tested on spores of both Bacillus species were largely reversible. CONCLUSIONS: This work indicates that inhibitors of B. subtilis spore germination fall into two classes: (i) compounds (most alkyl alcohols, N-ethylmaleimide, nifedipine, phenols, potassium sorbate) that inhibit the action of, or response to, primarily one nutrient receptor and (ii) compounds [amiloride, HgCl2, octanoic acid, octanol, phenylmethylsulphonylfluoride (PMSF), quinine, tetracaine, tosyl-l-arginine methyl ester, trifluoperazine] that inhibit the action of, or response to, several nutrient receptors. Action of these inhibitors, is reversible. The similar effects of inhibitors on B. megaterium spore germination by glucose or KBr indicate that inorganic salts likely trigger germination by activating one or more nutrient receptors. The lack of effect of all inhibitors on dodecylamine germination suggests that this compound stimulates germination by creating channels in the spore's inner membrane allowing DPA release. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the steps in spore germination that are inhibited by various chemicals, and the mechanism of action of these inhibitors. The work also provides new insights into the process of spore germination itself.  相似文献   

17.
D-cycloserine and germination of Bacillus cereus spores   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
The use of anthrax spores as a bioweapon has spurred efforts aimed at identifying key proteins expressed in Bacillus anthracis. Because spore germination and outgrowth occur prior to and are required for disease manifestations, blocking germination and early outgrowth with novel vaccines or inhibitors targeting critical B. anthracis germination and outgrowth-associated factors is a promising strategy in mitigating bioterror. By screening 587 paired protein spots that were isolated from dormant and germinating anthrax spores, respectively, we identified 10 spore proteins with statistically significant germination-associated increases and decreases. It is likely that proteins whose levels change during germination may play key roles in the germination and outgrowth processes, and they should be listed as priority targets for development of prophylactic and therapeutic agents against anthrax. The 31 new proteins identified in this study also complement an emerging proteomic database of B. anthracis.  相似文献   

20.
Free amino acids, dipicolinic acid, and unidentified small molecules were released early in Bacillus spore germination before hydrolysis of the peptidoglycan cortex, but adenine nucleotides and 3-phosphoglycerate were not. These results indicate that early in germination there is a major selective change in the permeability of the spore's inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号