首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After a single dose of an anticancer agent, changes due to cell death are expected to occur in the distribution of cells between proliferating and quiescent compartment as well as in the oxygenation and nutritional state of surviving cells. These changes are transient because tumour regrowth tends to restore the pretreatment status. The reoxygenation due to the decrease of oxygen consumption is expected to induce cell recruitment from quiescence into proliferation, and consequently to increase the sensitivity of the cell population to a successive treatment by a cycle-specific drug. In previous papers we proposed a model of the response of tumour cords (cylindrical arrangements of tumour cells growing around a blood vessel of the tumour) to single-dose treatments. The model included the motion of cells and oxygen diffusion and consumption. On the basis of that model suitably extended to better account for the action of anticancer drugs, we study the time course of the oxygenation and of the redistribution of cells between the proliferating and quiescent compartments. By means of simulations of the response to a dose delivered as two spaced equal fractions, we investigate the dependence of tumour response on the spacing between the fractions and on the main parameters of the system. A time window may be found in which the delivery of two fractions is more effective than the delivery of the undivided dose.  相似文献   

2.
Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment.  相似文献   

3.
Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.  相似文献   

4.
Tumour-related recovery in rat skin was estimated from the dependence of tumour yield on time between split doses of electron radiation. Tumour yield versus dose was established at nine dose points, and at three points the dose was split into two equal fractions spaced 0-25, 3-2 or 6-3 hours apart. After irradiation the rats were observed periodically for at least 64 weeks, and at death the tumours were examined histologically. The dependence of yield on dose for single doses was consistent with a quadratic function up to a peak yield at about 1600 rad. The effect of split doses on tumour yield depended on the position on the dose--response curve. At the lowest split dose, the yield declined with a half-time of about 1-8 hours. At the intermediate split dose, an initial increase was followed by a decline with a half-time of about 3-9 hours. At the highest split dose, the tumour yield increased with time between exposures. Fractionation-induced increases in tumour yield were explained as a sparing effect on cell lethality, whereas tumour-related recovery per se was indicated at the lower two doses.  相似文献   

5.
Current protocols for delivering radiotherapy are based primarily on tumour stage and nodal and metastases status, even though it is well known that tumours and their microenvironments are highly heterogeneous. It is well established that the local oxygen tension plays an important role in radiation-induced cell death, with hypoxic tumour regions responding poorly to irradiation. Therefore, to improve radiation response, it is important to understand more fully the spatiotemporal distribution of oxygen within a growing tumour before and during fractionated radiation. To this end, we have extended a spatially resolved mathematical model of tumour growth, first proposed by Greenspan (Stud Appl Math 51:317–340, 1972), to investigate the effects of oxygen heterogeneity on radiation-induced cell death. In more detail, cell death due to radiation at each location in the tumour, as determined by the well-known linear-quadratic model, is assumed also to depend on the local oxygen concentration. The oxygen concentration is governed by a reaction-diffusion equation that is coupled to an integro-differential equation that determines the size of the assumed spherically symmetric tumour. We combine numerical and analytical techniques to investigate radiation response of tumours with different intratumoral oxygen distribution profiles. Model simulations reveal a rapid transient increase in hypoxia upon regrowth of the tumour spheroid post-irradiation. We investigate the response to different radiation fractionation schedules and identify a tumour-specific relationship between inter-fraction time and dose per fraction to achieve cure. The rich dynamics exhibited by the model suggest that spatial heterogeneity may be important for predicting tumour response to radiotherapy for clinical applications.  相似文献   

6.
The underlying physiological mechanisms leading to tumor reoxygenation after irradiation have elicited considerable interest, but they remain somewhat unclear. The current study was undertaken to determine the effects of a single dose of 10 Gy gamma radiation on both tumor pathophysiology and radiobiologically hypoxic fraction. Immunohistochemical staining and perfusion markers were used to quantify tumor vasculature, uptake of the hypoxia marker EF5 to assess the distribution of hypoxia, and intravascular HbO(2) measurements to determine oxygen availability. Tumor radiosensitivity was measured by a clonogenic assay. At 24 h postirradiation, oxygen availability increased, perfused vessel numbers decreased, EF5 uptake decreased, and the radiobiologically hypoxic fraction was unchanged. Together, these results demonstrate that tumor hypoxia develops at an increased distance from perfused blood vessels after irradiation, suggesting a decrease in oxygen consumption at 24 h. By 72 h postirradiation, all physiological parameters had returned to the levels in volume-matched, nonirradiated controls. These studies clearly show that single measures of either tumor oxygenation or vascular structure are inadequate for assessing the effects of radiation on tumor clonogenicity. Although such direct measurements have previously proven valuable in predicting tumor response to therapy or oxygen manipulation, a combination of parameters is required to adequately describe the mechanisms underlying these changes after irradiation.  相似文献   

7.
Recent findings indicate that in a hypoxic environment, oncogenically transformed cells with a mutant form of the tumour suppressor gene p53 may have a survival advantage over similar cells with wild-type p53. This is because the extent of hypoxia-induced apoptosis has been observed to diminish with the loss of wild-type p53 function in certain cell lines. Hypoxic conditions, common in most solid tumours, may thus provide a physiological pressure to select for cells with mutations in the p53 gene. A new model incorporating cell-specific parameters is proposed here to quantify the survival advantage of mutant or null p53 cells over their wild-type counterparts at any level of oxygen deprivation. Predictions are in good agreement with previous monolayer culture experiments comparing hypoxic survival of null and wild-type p53 cells. By extending the model we are able to investigate the effects of repeated rounds of hypoxia and reoxygenation on a mixture of wild-type and mutant or null p53 cells and determine how many rounds are required before a subpopulation of mutant or null p53 cells overtakes a given population of wild-type p53 cells.  相似文献   

8.
The effect of hyperglycemia (elevated blood glucose level) on the response of a murine tumor to irradiation given alone or in combination with hyperthermia was studied. Tumors were early generation isotransplants of a spontaneous C3H/Sed mouse fibrosarcoma, FSa-II. Single-cell suspensions were transplanted into the foot, and irradiation was given when each tumor reached an average diameter of 7 mm. Following irradiation, the tumor growth time to reach 1000 mm3 was studied and the dose-response curve between the tumor growth time and radiation dose was fitted. Preadministration of glucose increased the size of the hypoxic and chronically hypoxic cell fractions without altering the slope of the dose-response curve where the chronically hypoxic cell fraction is determined as the fraction of cells which were not oxygenated under hyperbaric oxygen conditions. Hyperthermia given prior to irradiation enhanced the tumor response to irradiation, but simultaneously increased the size of the hypoxic and chronically hypoxic cell fractions. Similar results were observed following hyperthermia given after irradiation. When hyperthermia at 43.5 degrees C was given 24 h before irradiation, the size of the hypoxic cell fraction increased with increasing treatment time, while a substantial decrease in the chronically hypoxic cell fraction was observed. Administration of glucose 60 min before hyperthermia further increased the size of the hypoxic cell fraction. Possible mechanisms explaining why glucose administration increases the hypoxic cell fractions are discussed.  相似文献   

9.
The authors discuss the possibility of application of multicellular spheroids as a model system in studies based on NSD conception. The death rate of spheroids from cells of Chinese hamster V79-4 was shown to depend upon cumulative dose of gamma- and neutron (0.7 MeV)-radiation (the number of fractions was 1, 5 and 10). With fractionated irradiation, the reoxygenation effect was observed. A good coincidence was obtained between the dependence of the cumulative dose upon the number of fractions for multicellular spheroids and clinical data.  相似文献   

10.
Tumour hypoxia is a well‐established factor of resistance in radiation therapy (RT). Myo‐inositol trispyrophosphate (ITPP) is an allosteric effector that reduces the oxygen‐binding affinity of haemoglobin and facilitates the release of oxygen by red blood cells. We investigated herein the oxygenation effect of ITPP in six tumour models and its radiosensitizing effect in two of these models. The evolution of tumour pO2 upon ITPP administration was monitored on six models using 1.2 GHz Electron Paramagnetic Resonance (EPR) oximetry. The effect of ITPP on tumour perfusion was assessed by Hoechst staining and the oxygen consumption rate (OCR) in vitro was measured using 9.5 GHz EPR. The therapeutic effect of ITPP with and without RT was evaluated on rhabdomyosarcoma and 9L‐glioma rat models. ITPP enhanced tumour oxygenation in six models. The administration of 2 g/kg ITPP once daily for 2 days led to a tumour reoxygenation for at least 4 days. ITPP reduced the OCR in six cell lines but had no effect on tumour perfusion when tested on 9L‐gliomas. ITPP plus RT did not improve the outcome in rhabdomyosarcomas. In 9L‐gliomas, some of tumours receiving the combined treatment were cured while other tumours did not benefit from the treatment. ITPP increased oxygenation in six tumour models. A decrease in OCR could contribute to the decrease in tumour hypoxia. The association of RT with ITPP was beneficial for a few 9L‐gliomas but was absent in the rhabdomyosarcomas.  相似文献   

11.
Cell kinetics and radiation biology   总被引:8,自引:0,他引:8  
The cell cycle, the growth fraction and cell loss influence the response of cells to radiation in many ways. The variation in radiosensitivity around the cell cycle, and the extent of radiation-induced delay in cell cycle progression have both been clearly demonstrated in vitro. This translates into a variable time of expression of radiation injury in different normal tissues, ranging from a few days in intestine to weeks, months or even years in slowly proliferating tissues like lung, kidney, bladder and spinal cord. The radiosensitivity of tumours, to single doses, is dominated by hypoxic cells which arise from the imbalance between tumour cell production and the proliferation and branching of the blood vessels needed to bring oxygen and other nutrients to each cell. The response to fractionated radiation schedules is also influenced by the cell kinetic parameters of the cells comprising each tissue or tumour. This is described in terms of repair, redistribution, reoxygenation and repopulation. Slowly cycling cells show much more curved underlying cell survival curves, leading to more dramatic changes with fractionation, dose rate or l.e.t. Rapidly cycling cells redistribute around the cell cycle when the cells in sensitive phases have been killed, and experience less mitotic delay than slowly proliferating cells. Reoxygenation seems more effective in tumours with rapidly cycling cells and high natural cell loss rates. Compensatory repopulation within a treatment schedule may spare skin and mucosa but does not spare slowly proliferating tissues. Furthermore, tumour cell proliferation during fractionated radiotherapy may be an important factor limiting the overall success of treatment.  相似文献   

12.
Due to the abnormal vasculature of solid tumors, tumor cell oxygenation can change rapidly with the opening and closing of blood vessels, leading to the activation of both hypoxic response pathways and oxidative stress pathways upon reoxygenation. Here, we report that ataxia telangiectasia mutated-dependent phosphorylation and activation of Chk2 occur in the absence of DNA damage during hypoxia and are maintained during reoxygenation in response to DNA damage. Our studies involving oxidative damage show that Chk2 is required for G2 arrest. Following exposure to both hypoxia and reoxygenation, Chk2-/- cells exhibit an attenuated G2 arrest, increased apoptosis, reduced clonogenic survival, and deficient phosphorylation of downstream targets. These studies indicate that the combination of hypoxia and reoxygenation results in a G2 checkpoint response that is dependent on the tumor suppressor Chk2 and that this checkpoint response is essential for tumor cell adaptation to changes that result from the cycling nature of hypoxia and reoxygenation found in solid tumors.  相似文献   

13.
In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell''s cell-cycle dynamics are intrinsically modified through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the distribution of tumour cells and their response to different treatment schedules.  相似文献   

14.
The variation in hypoxic fraction as a function of time after various priming doses of radiation has been investigated in a C3H mouse mammary carcinoma in situ. The hypoxic fraction was calculated from data for local tumor control. Untreated tumors were found to contain 4.8% radiobiologically hypoxic cells. Within minutes after a priming dose of 20 Gy given in air, the hypoxic fraction increased to a value not significantly different from 100%. After 4 h, reoxygenation was complete (hypoxic fraction 1.3%), and the hypoxic fraction stabilized at a level significantly below the untreated value. Following a priming dose of 40 Gy the reoxygenation pattern was different: The hypoxic fraction stayed above the pretreatment value for 4 h, and pronounced reoxygenation occurred after 12 h (hypoxic fraction 0.4%). At longer time intervals the hypoxic fraction again increased to--and slightly above--the oxygenation level of untreated tumors. The present findings show that reoxygenation in solid tumors is a function of radiation dose, and the data suggest that mechanisms other than a decrease in tumor cell O2 consumption are involved in tumor reoxygenation.  相似文献   

15.
The effect of irradiation depends on the oxygenation status of the tissue, while irradiation itself also changes the oxygenation and perfusion status of tissues. A better understanding of the changes in tumor oxygenation and perfusion over time after irradiation will allow a better planning of fractionated radiotherapy in combination with modifiers of blood flow and oxygenation. Vascular architecture (endothelial marker), perfusion (Hoechst 33342) and oxygenation (pimonidazole) were studied in a human laryngeal squamous cell carcinoma tumor line grown as xenografts in nude mice. The effect of a single dose of 10 Gy X rays on these parameters was evaluated from 2 h to 11 days after irradiation. Shortly after irradiation, there was an 8% increase in perfused blood vessels (from 57% to 65%) followed by a significant decrease, with a minimum value of 42% at 26 h after irradiation, and a subsequent increase to control levels at 7 to 11 days after irradiation. The hypoxic fraction showed a decrease at 7 h after treatment from 13% to 5% with an increase to 19% at 11 days after irradiation. These experiments show that irradiation causes rapid changes in oxygenation and perfusion which may have consequences for the optimal timing of radiotherapy schedules employing multiple fractions per day and the introduction of oxygenation- and perfusion-modifying drugs.  相似文献   

16.

Objectives

Tumour re‐population during radiotherapy was identified as an important reason for treatment failure in head and neck cancers. The process of re‐population is suggested to be caused by various mechanisms, one of the most plausible one being accelerated division of stem‐cells (i.e. drastic shortening of cell cycle duration). However, the literature lacks quantitative data regarding the length of tumour stem‐cell cycle time during irradiation.

Materials and methods

The presented work suggests that if accelerated stem‐cell division is indeed a key mechanism behind tumour re‐population, the stem‐cell cycle time can drop below 10 h during radiotherapy. To illustrate the possible implications, the mechanism of accelerated division was implemented into a Monte Carlo model of tumour growth and response to radiotherapy. Tumour response to radiotherapy was simulated with different stem‐cell cycle times (between 2 and 10 h) after the initiation of radiotherapy.

Results

It was found that very short stem‐cell cycle times lead to tumour re‐population during treatment, which cannot be overcome by radiation‐induced cell kill. Increasing the number of radiation dose fractions per week might be effective, but only for longer cell cycle times.

Conclusion

It is of crucial importance to quantitatively assess the mechanisms responsible for tumour re‐population, given that conventional treatment regimens are not efficient in delivering lethal doses to advanced head and neck tumours.  相似文献   

17.
The cell kinetic perturbations following irradiation (20 Gy) were studied by combining the metaphase arrest method using vincristine with histological indices of cell death. The metaphase arrest method yielded remarkably constant values of rate of entry into mitosis (rM) of around 24 new cells/1,000 cells/hour during a 7 day period in which there was no tumour growth. The time course of cell death as indicated by changes in the pyknotic index during this period may reflect the processes of reoxygenation and repopulation known to influence the results of fractionated radiotherapy.  相似文献   

18.
The effects of the combination of a perfluorochemical emulsion (Fluosol DA, 20%) and carbogen (95% O2, 5% CO2) on the response of BA1112 rat rhabdomyosarcomas to continuous low-dose-rate irradiation were examined. Tumors were irradiated locally in unrestrained, unanesthetized rats at a dose rate of 0.98 Gy/h, using a specially designed 241Am irradiator system. Cell survival was measured using a colony formation assay. The tumor cell survival curves were fitted to linear relationships of the form ln S = - alpha D, where alpha for air-breathing rats was 0.104 +/- 0.005 Gy-1, as compared to 0.137 +/- 0.009 Gy-1 for rats treated with Fluosol plus carbogen. The increase in the slope of the survival curve produced by the treatment with Fluosol and carbogen was highly significant with a P value of 0.0015. The radiosensitization factor for the combination of Fluosol/carbogen plus continuous low-dose-rate irradiation was 1.32 +/- 0.11. Slightly less radiosensitization was observed with continuous low-dose-rate irradiation than in previous experiments using acute high-dose-rate irradiation. The diminished sensitization with Fluosol/carbogen during continuous low-dose-rate irradiation probably reflects the intrinsically lower oxygen enhancement ratio (OER) of low-dose/low-dose-rate irradiation, reoxygenation of the tumors during the prolonged treatment times used for continuous low-dose-rate irradiation, and the decrease in the levels of circulating perfluorochemicals during the 30-h irradiations. More importantly, the significant level of radiosensitization observed in the experiments with continuous low-dose-rate irradiation suggests that hypoxic cells persist in BA1112 tumors during continuous low-dose-rate irradiations and that the response of these tumors to continuous low-dose-rate irradiation can be improved by adjunctive treatments which oxygenate these radioresistant hypoxic tumor cells.  相似文献   

19.
In this paper, the evolution of a tumour cord after treatment is investigated by extensive numerical simulations on the basis of a mathematical model developed by Bertuzzi et al. (submitted). The model is formulated in cylindrical symmetry adopting the continuum approach, and takes into account the influence of oxygen level on the proliferation and death rate of cells, the volume reduction due to disgregation of dead cells, and the cell killing effects of radiation and drugs. Some extensions of the model are proposed to represent more accurately the radioresistance of hypoxic cells and the cytotoxic action of anticancer drugs. The steady state of the cord, and the cord evolution from the steady state after the delivery of a single dose of an anticancer agent, are computed for various combinations of model parameters and for different choices of the functions describing the effects of treatments. The results of the numerical computations show that, in spite of its many simplifications, the model behaviour appears to be reasonable in view of the available experimental observations. The model allows having a better insight into some complex treatment-related events, such as cell reoxygenation and repopulation.  相似文献   

20.
Abstract. Development of predictive assays for measuring tumour radiosensitivity has generated much recent interest, particularly with the recognition that tumour cell survival at doses of about 2 Gy may correlate well with tumour curability. Clinical data, however, suggest that overall treatment time may be of considerable significance in radioresponsive tumours, especially for rapidly growing tumours capable of accelerated repopulation. Because neither factor can be repeatedly assessed in human tumours, we used cells growing as multicell spheroids to determine whether the initial radiation response would be predictive for multifraction exposures, or whether other factors including repopulation rate should be considered. Potential problems of hypoxia and reoxygenation were avoided by using small spheroids which had not yet developed radiobiologically hypoxic regions. Repair and redistribution dominated the responses in the first two or three exposures, with repopulation playing a minor role. As the fractionation schedule was extended, however, repopulation between fractions largely determined the number of viable cells per spheroid. We conclude that the radiation response of cells from untreated spheroids provides a general indication of net sensitivity, but that repair and redistribution produces considerable variation in radiosensitivity throughout a fractionation protocol. Ultimately, repopulation effects may dominate the multifraction response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号