首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review we describe proteins and supermolecular structures which take part in the division of bacterial cells. FtsZ, a eukaryotic tubulin homolog is a key cell division protein in most prokaryotes. FtsZ, as well as tubulin, is capable of binding and hydrolyzing GTP. The division of a bacterial cell begins with the forming of a so-called divisome. The basis of such a divisome is a contractile ring (Z ring) which encircles the cell about midcell. The Z-ring consists of a bundle of laterally bound protofilaments formed in result of FtsZ polymerization. Z-ring is rigidly bounded to the cytosolic side of the inner membrane with the participation of FtsA, ZipA, FtsW and many other divisome cell division proteins. The ring directs the process of cytokinesis transmitting constriction power to the membrane. The primary structures of the prokaryotic FtsZ family members significantly differ from eukaryotic tubulins except for the sites of GTP binding. There is a high degree of structural homology between these proteins in the region. FtsZ is one of the most conserved proteins in prokaryotes. However, ftsZ genes have not been found in several species of microorganisms with completely sequenced genomes. They include two species of mycoplasmas (Ureaplasma parvum and Mycoplasma mobile), Prostecobacter dejongeii, 10 species of chlamydia and 5 species of archaea. Consequently, these organisms divide without FtsZ participation. The genomes of U. parvum and M. mobile have many open reading frames which encode proteins with unknown functions. A comparison of the primary structures of these hypothetical proteins did not identify any known cell division proteins. We hypothesize that the process of cell division in these organisms should involve proteins similar to FtsZ in function and homologous to FtsZ or other cell division proteins in structure.  相似文献   

2.
In this review we have tried to describe proteins and supermolecular structures which take part in the division of bacterial cell. The principal cell division protein of the most of prokaryotes is FtsZ, a homologue of eukaryotic tubulin. FtsZ just as tubulin is capable to bind and hydrolyze GTP. The division of bacterial cell begins with forming of so called divisome. The basis of such divisome is a contractile ring (Z ring); the ring encircles the cell about midcell. Z ring consists of a bundle of laterally bound protofilaments, which have been formed as a result of FtsZ polymerization. Z ring is rigidly bounded to cytozolic side of inner membrane with participation of FtsA, ZipA, FtsW and many other cell division proteins of divisome. The ring directs the process of cytokinesis transmitting power of constriction to membrane. Primary structures of members of the family of prokaryotic FtsZs differ from eukaryotic tubulines significantly except the region, where the site of GTP binding is placed. There is high degree of homology between structures of these proteins in the region. FtsZ is one of the most conservative proteins in prokaryotes, but ftsZ genes have not been found in completely sequenced genomes of several species of microorganisms. There are 2 species of mycoplasmas (Ureaplasma parvum and Mycoplasma mobile), Prostecobacter dejongeii, 10 species of chlamydia and 5 species of archaea among them. So these organisms divide without FtsZ. There are many open reading frames which encode proteins with unknown functions in genomes of U. parvum and M. mobile. The comparison of primary structures of these hypothetical proteins with structures of cell division proteins did not allow researchers to find similar proteins among them. We suppose that the process of cell division of these organisms should recruit proteins with function similar to FtsZ and having homologous with FtsZ or other cell division proteins spatial structures.  相似文献   

3.
4.
FtsZ was identified in bacteria as the first protein to localize mid-cell prior to division and homologs have been found in many plant species. Bacterial studies demonstrated that FtsZ forms a ring structure that is dynamically exchanged with a soluble pool of FtsZ. Our previous work established that Arabidopsis FtsZ1 and FtsZ2-1 are capable of in vitro self-assembly into two distinct filament types, termed type-I and type-II and noted the presence of filament precursor molecules which prompted this investigation. Using a combination of electron microscopy, gel chromatography and native PAGE revealed that (i) prior to FtsZ assembly initiation the pool consists solely of dimers and (ii) during assembly of the Arabidopsis FtsZ type-II filaments the most common intermediate between the dimer and filament state is a tetramer. Three-dimensional reconstructions of the observed dimer and tetramer suggest these oligomeric forms may represent consecutive steps in type-II filament assembly and a mechanism is proposed, which is expanded to include FtsZ assembly into type-I filaments. Finally, the results permit a discussion of the oligomeric nature of the soluble pool in plants.  相似文献   

5.
6.
The properties and molecular organization of flagella—the bacterial and archaeal motility organelles—are reviewed. The organization of these functional motility elements of prokaryotic organisms belonging to different kingdoms is compared. A mechanism for both in vivo and in vitro assembly of bacterial flagellum filaments (BFFs) is discussed, and similarity is supposed between flagellin and actin with regard to their polymeric forms (BFF and F-actin). Our own data on intracellular fixation of the Halobacterium salinarium flagellum are presented. Comparative characteristics of intracellular fixation of bacterial and archaeal flagella are also described.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1477–1488.Original Russian Text Copyright © 2004 by Metlina.  相似文献   

7.
In bacteria, the protein FtsZ is the principal component of a ring that constricts the cell at division. Though all mitochondria probably arose through a single, ancient bacterial endosymbiosis, the mitochondria of only certain protists appear to have retained FtsZ, and the protein is absent from the mitochondria of fungi, animals, and higher plants. We have investigated the role that FtsZ plays in mitochondrial division in the genetically tractable protist Dictyostelium discoideum, which has two nuclearly encoded FtsZs, FszA and FszB, that are targeted to the inside of mitochondria. In most wild-type amoebae, the mitochondria are spherical or rod-shaped, but in fsz-null mutants they become elongated into tubules, indicating that a decrease in mitochondrial division has occurred. In support of this role in organelle division, antibodies to FszA and FszA-green fluorescent protein (GFP) show belts and puncta at multiple places along the mitochondria, which may define future or recent sites of division. FszB-GFP, in contrast, locates to an electron-dense, submitochondrial body usually located at one end of the organelle, but how it functions during division is unclear. This is the first demonstration of two differentially localized FtsZs within the one organelle, and it points to a divergence in the roles of these two proteins.  相似文献   

8.
FtsE and FtsX, which are widely conserved homologs of ABC transporters and interact with each other, have important but unknown functions in bacterial cell division. Coimmunoprecipitation of Escherichia coli cell extracts revealed that a functional FLAG-tagged version of FtsE, the putative ATP-binding component, interacts with FtsZ, the bacterial tubulin homolog required to assemble the cytokinetic Z ring and recruit the components of the divisome. This interaction is independent of FtsX, the predicted membrane component of the ABC transporter, which has been shown previously to interact with FtsE. The interaction also occurred independently of FtsA or ZipA, two other E. coli cell division proteins that interact with FtsZ. In addition, FtsZ copurified with FLAG-FtsE. Surprisingly, the conserved C-terminal tail of FtsZ, which interacts with other cell division proteins, such as FtsA and ZipA, was dispensable for interaction with FtsE. In support of a direct interaction with FtsZ, targeting of a green fluorescent protein (GFP)-FtsE fusion to Z rings required FtsZ, but not FtsA. Although GFP-FtsE failed to target Z rings in the absence of ZipA, its localization was restored in the presence of the ftsA* bypass suppressor, indicating that the requirement for ZipA is indirect. Coexpression of FLAG-FtsE and FtsX under certain conditions resulted in efficient formation of minicells, also consistent with an FtsE-FtsZ interaction and with the idea that FtsE and FtsX regulate the activity of the divisome.  相似文献   

9.
Interaction between FtsZ and inhibitors of cell division.   总被引:17,自引:13,他引:17       下载免费PDF全文
J Huang  C Cao    J Lutkenhaus 《Journal of bacteriology》1996,178(17):5080-5085
The interaction between inhibitors of cell division and FtsZ were assessed by using the yeast two-hybrid system. An interaction was observed between FtsZ and SulA, a component of the SOS response, and the interacting regions were mapped to their conserved domains. This interaction was reduced by mutations in sulA and by most mutations in ftsZ that make cell refractory to sulA. No interaction was detected between FtsZ and MinCD, an inhibitory component of the site selection system. However, interactions were observed among various members of the Min system, and MinE was found to reduce the interaction between MinC and MinD. The implications of these findings for cell division are discussed.  相似文献   

10.
The division of Escherichia coli is mediated by a collection of some 34 different proteins that are recruited to the division septum and are thought to assemble into a macromolecular complex known as ‘the divisome’. Herein, we have endeavored to better understand the structure of the divisome by imaging two of its core components; FtsZ and FtsN. Super resolution microscopy (SIM and gSTED) indicated that both proteins are localized in large assemblies, which are distributed around the division septum (i.e., forming a discontinuous ring). Although the rings had similar radii prior to constriction, the individual densities were often spatially separated circumferentially. As the cell envelope constricted, the discontinuous ring formed by FtsZ moved inside the discontinuous ring formed by FtsN. The radial and circumferential separation observed in our images indicates that the majority of FtsZ and FtsN molecules are organized in different macromolecular assemblies, rather than in a large super‐complex. This conclusion was supported by fluorescence recovery after photobleaching measurements, which indicated that the dynamic behavior of the two macromolecular assemblies was also fundamentally different. Taken together, the data indicates that constriction of the cell envelope is brought about by (at least) two spatially separated complexes.  相似文献   

11.
The polymerization of FtsZ is a finely regulated process that plays an essential role in the bacterial cell division process. However, only a few modulators of FtsZ polymerization are known. We identified monosodium glutamate as a potent inducer of FtsZ polymerization. In the presence of GTP, glutamate enhanced the rate and extent of polymerization of FtsZ in a concentration-dependent manner; approximately 90% of the protein was sedimented as polymer in the presence of 1 m glutamate. Electron micrographs of glutamate-induced polymers showed large filamentous structures with extensive bundling. Furthermore, glutamate strongly stabilized the polymers against dilution-induced disassembly, and it decreased the GTPase activity of FtsZ. Calcium induced FtsZ polymerization and bundling of FtsZ polymers; interestingly, although 1 m glutamate produced a larger light-scattering signal than produced by 10 mm calcium, the amount of polymer sedimented in the presence of 1 m glutamate and 10 mm calcium was similar. Thus, the increased light scattering in the presence of glutamate must be due to its ability to induce more extensive bundling of FtsZ polymers than calcium. The data suggest that calcium and glutamate might induce FtsZ polymerization by different mechanisms.  相似文献   

12.
FtsZ is a prokaryotic tubulin homologue that polymerizes into a dynamic ring during cell division. GTP binding and hydrolysis provide the energy for FtsZ dynamics. However, the precise role of hydrolysis in polymer assembly and turnover is not understood, limiting our understanding of how FtsZ functions in the cell. Here we investigate GTP hydrolysis during the FtsZ polymerization cycle using several complementary approaches that avoid technical caveats of previous studies. We find that at steady state approximately 80% of FtsZ polymer subunits are bound to GTP. In addition, we use pre-steady-state, single turnover assays to directly measure the rate of hydrolysis. Hydrolysis was found to occur at approximately 8/min and to be a rate-limiting step in GTP turnover; phosphate release rapidly followed. These results clarify previously conflicting results in the literature and suggest that pure FtsZ polymers, unlike microtubules, may not be able to undergo dynamic instability or to store energy in the polymer for force production.  相似文献   

13.
The localization of FtsZ protein in M. hominis cells was studied by immunoelectron microscopy with polyclonal antibodies to this protein. Cell polymorphism typical for mycoplasmas was seen on electron microscopic pictures. Among the diversity of cell shapes, we distinguished dumbbell-shaped dividing cells and cells connected with each other by membrane tubules (former constrictions). The label was predominantly observed in the constriction area of dividing M. hominis cells and on thin membrane tubules. A septum and the gold labeling of this structure have not been described before in mycoplasma cells. For the first time, in some rounded and oval cells, colloidal gold particles labeled the entire plasma membrane, probably marking a submembranous contractile ring (Z ring). These observations confirm the implication of FtsZ protein in M. hominis cytokinesis. In some cells, the spiral-like distribution of gold particles was observed. Most likely, FtsZ protofilaments in M. hominis cells form spiral structures similar to Z spirals in Bacillus subtilis and Escherichia coli. Their presence in mycoplasma cells may be considered to be an important argument in favor of Z ring assembly through the reorganization of Z spirals. FtsZ as a bacterial cytoskeleton protein binding with membrane directly or through intermediates may be engaged in maintenance of M. hominis cell shape.  相似文献   

14.
Bacterial FtsZ assembles and constricts after chromosomal segregation in the course of cell division. Here we examined the localization of FtsZ in multinucleated swarmer cells of Proteus mirabilis by immunostaining. FtsZ was found to localize to the point of karyomitosis in swarmer cells of P. mirabilis, which is equivalent to filamentous mutants of Escherichia coli defective in the ftsI or ftsQ genes that are involved in later steps of cell division. Thus our findings suggest that the appearance of swarmer cells results from cellular functions immediately after FtsZ assembly.  相似文献   

15.
Translin and Trax are components of an RNA binding complex initially detected in extracts of brain and testes. Although other tissues appear to contain much lower or negligible levels of the Translin/Trax gel-shift complex, we found, unexpectedly, that several of these peripheral tissues express Translin and Trax proteins at levels comparable to those present in brain. In this study, we demonstrate that the paradoxically low levels of the Translin/Trax complex in kidney and other peripheral tissues are due to masking of these sites by endogenous RNA. Thus, these findings indicate that the Translin/Trax complex is involved in RNA processing in a broader range of tissues than previously recognized.  相似文献   

16.
Plastids, an essential group of plant cellular organelles, proliferate by division to maintain continuity through cell lineages in plants. In recent years, it was revealed that the bacterial cell division protein FtsZ is encoded in the nuclear genome of plant cells, and plays a major role in the plastid division process forming a ring along the center of plastids. Although the best-characterized type of plastid division so far is the division with a single FtsZ ring at the plastid midpoint, it was recently reported that in some plant organs and tissues, plastids are pleomorphic and form multiple FtsZ rings. However, the pleomorphic plastid division mechanism, such as the formation of multiple FtsZ rings, the constriction of plastids and the behavior of plastid (pt) nucleoids, remains totally unclear. To elucidate these points, we used the cultured cell line, tobacco (Nicotiana tabacum L.) Bright Yellow-2, in which plastids are pleomorphic and show dynamic morphological changes during culture. As a result, it was revealed that as the plastid elongates from an ellipsoid shape to a string shape after medium renewal, FtsZ rings are multiplied almost orderly and perpendicularly to the long axis of plastids. Active DNA synthesis of pt nucleoids is induced by medium transfer, and the division and the distribution of pt nucleoids occur along with plastid elongation. Although it was thought that the plastid divides with simultaneous multiple constrictions at all the FtsZ ring sites, giving rise to many small plastids, we found that the plastids generally divide constricting at only one FtsZ ring site. Moreover, using electron microscopy, we revealed that plastid-dividing (PD) rings are observed only at the constriction site, and not at swollen regions. These results indicate that in the pleomorphic plastid division with multiple FtsZ rings, the formation of PD rings occurs at a limited FtsZ ring site for one division. Multiplied FtsZ rings seem to localize in advance at the expected sites of division, and the formation of a PD ring at each FtsZ ring site occurs in a certain order, not simultaneously. Based on these results, a novel model for the pleomorphic plastid division with multiple FtsZ rings is proposed.  相似文献   

17.
The arc3 (accumulation and replication of chloroplast) mutant of Arabidopsis thaliana has a small number of abnormally large chloroplasts in the cell, suggesting that chloroplast division is arrested in the mutant and ARC3 has an important role in the initiation of chloroplast division. To elucidate the role of ARC3, first we identified the ARC3 gene, and determined the location of ARC3 protein during chloroplast division because the localization and spatial orientation of such division factors are vital for correct chloroplast division. Sequencing analysis showed that ARC3 was a fusion of the prokaryotic FtsZ and part of the eukaryotic phosphatidylinositol-4-phosphate 5-kinase (PIP5K) genes. The PIP5K-homologous region of ARC3 had no catalytic domain but a membrane-occupation-and-recognition-nexus (MORN) repeat motif. Immunofluorescence microscopy, Western blotting analysis and in vitro chloroplast import and protease protection assays revealed that ARC3 protein was soluble, and located on the outer surface of the chloroplast in a ring-like structure at the early stage of chloroplast division. Prokaryotes have one FtsZ as a gene for division but have no ARC3 counterparts, the chimera of FtsZ and PIP5K, suggesting that the ARC3 gene might have been generated from FtsZ as another division factor during the evolution of chloroplast by endosymbiosis.  相似文献   

18.
Perhaps the biggest single task facing a bacterial cell is to divide into daughter cells that contain the normal complement of chromosomes. Recent technical and conceptual breakthroughs in bacterial cell biology, combined with the flood of genome sequence information and the excellent genetic tools in several model systems, have shed new light on the mechanism of prokaryotic cell division. There is good evidence that in most species, a molecular machine, organized by the tubulin-like FtsZ protein, assembles at the site of division and orchestrates the splitting of the cell. The determinants that target the machine to the right place at the right time are beginning to be understood in the model systems, but it is still a mystery how the machine actually generates the constrictive force necessary for cytokinesis. Moreover, although some cell division determinants such as FtsZ are present in a broad spectrum of prokaryotic species, the lack of FtsZ in some species and different profiles of cell division proteins in different families suggests that there are diverse mechanisms for regulating cell division.  相似文献   

19.
FtsZ ring formation at the chloroplast division site in plants   总被引:15,自引:0,他引:15  
Among the events that accompanied the evolution of chloroplasts from their endosymbiotic ancestors was the host cell recruitment of the prokaryotic cell division protein FtsZ to function in chloroplast division. FtsZ, a structural homologue of tubulin, mediates cell division in bacteria by assembling into a ring at the midcell division site. In higher plants, two nuclear-encoded forms of FtsZ, FtsZ1 and FtsZ2, play essential and functionally distinct roles in chloroplast division, but whether this involves ring formation at the division site has not been determined previously. Using immunofluorescence microscopy and expression of green fluorescent protein fusion proteins in Arabidopsis thaliana, we demonstrate here that FtsZ1 and FtsZ2 localize to coaligned rings at the chloroplast midpoint. Antibodies specific for recognition of FtsZ1 or FtsZ2 proteins in Arabidopsis also recognize related polypeptides and detect midplastid rings in pea and tobacco, suggesting that midplastid ring formation by FtsZ1 and FtsZ2 is universal among flowering plants. Perturbation in the level of either protein in transgenic plants is accompanied by plastid division defects and assembly of FtsZ1 and FtsZ2 into filaments and filament networks not observed in wild-type, suggesting that previously described FtsZ-containing cytoskeletal-like networks in chloroplasts may be artifacts of FtsZ overexpression.  相似文献   

20.
FtsZ ring: the eubacterial division apparatus conserved in archaebacteria   总被引:10,自引:2,他引:10  
FtsZ is a tubulin-like protein that is essential for cell division in eubacteria. It functions by forming a ring at the division site that directs septation. The archaebacteria constitute a kingdom of life separate from eubacteria and eukaryotes. Like eubacteria, archaebacteria are prokaryotes, although they are phylogenetically closer to eukaryotes. Here it is shown that archaebacteria also possess FtsZ and that it is biochemically similar to eubacterial FtsZs. Significantly, FtsZ from the archaebacterium Haloferax volcanii is a GTPase that is localized to a ring that coincides with the division constriction. These results indicate that the FtsZ ring was part of the division apparatus of a common prokaryotic ancestor that was retained by both eubacteria and archaebacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号