首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anatomy of the bivalved arthropod Isoxys (Early and Middle Cambrian) is reconstructed, based on new evidence from soft parts and exoskeletal design and on a critical review of previous work. Isoxys had a long segmented body flanked with a pair of short antennules, followed by a series of 14 biramous appendages provided with long paddle-like exopods concealed under a widely open bivalved carapace folded dorsally and bearing long cardinal spines. The close resemblance between Isoxys and Recent pelagic crustaceans (halocyprid ostracods, larval stages of malacostracans) indicates that Isoxys was probably an active epipelagic swimmer (evidence from soft parts, carapace design and distributional pattern). Some species (e.g. I. auritus and I. paradoxus from the Maotianshan Shale biota; Early Cambrian) may have lived in the vicinity of the bottom either permanently or temporarily, whereas others may have had ecological preferences for more open-marine settings. The spinosity of Isoxys had a possible role in predatorial deterrence rather than in buoyancy control or in retarding sinking within the water column. The presence of Isoxys in the Maotianshan Shale of S. China indicates that arthropods had already colonized midwater niches by the Early Cambrian. The midwater communities of the Maotianshan Shale comprised numerous other invertebrates, such as abundant medusiform eldonids, vetulicolids, chordates and possibly early vertebrates. This contradicts the opinion that pelagic communities remained poorly developed until late Cambrian/Ordovician times and that the occupation of the midwater niches largely post-dates the initial diversification of the benthic faunas.  相似文献   

2.
An updated reconstruction of the body plan, functional anatomy and life attitude of the bradoriid arthropod Kunmingella is proposed, based on new fossil specimens with preserved soft parts found in the lower Cambrian of Chengjiang and Haikou (Yunnan, SW China) and on previous evidence. The animal has a single pair of short antennae pointing towards the front (a setal pattern indicates a possible sensory function). The following set of seven appendages (each composed of a 5-segmented endopod and a leaf-like exopod fringed with setae) is poorly differentiated, except the first three pairs (with possible rake-like endopodial outgrowths, smaller exopods) and the last pair of appendages (endopod with longer and more slender podomeres). The endopods are interpreted as walking legs with a possible role in handling food particles (marginal outgrowth with setae). The leaf-like exopods may have had a respiratory function. The trunk end is short, pointed, flanked with furcal-like rami and projects beyond the posterior margin of the carapace. The attachment of the body to the exoskeleton is probably cephalic and apparently lacks any well-developed adductor muscle system. The inferred life attitude of Kunmingella (e.g. crawling on the surface of the sediment) was that of a dorsoventrally flattened arthropod capped by a folded dorsal shield (ventral gape at least 120°), thus resembling the living ostracode Manawa. The animal was also probably able to close its carapace as a response to environmental stress or to survive unfavourable conditions (e.g. buried in sediment). The anterior lobes of the valves are likely to have accommodated visual organs (possibly lensless receptors perceiving ambient light through the translucent head shield). Preserved eggs or embryos suggest a possible ventral brood care. The presence of Kunmingella in coprolites and its numerical abundance in Chengjiang sediment indicate that bradoriids constituted an important source of food for larger predators. Kunmingella differs markedly from the representatives of the crown group Crustacea (extant and Cambrian taxa) and from the stem group derivatives of Crustacea (exemplified by phosphatocopids and some ‘Orsten’ taxa) in showing no major sign of limb specialization (e.g. related to feeding strategies). Although it resembles other Chengjiang euarthropods in important aspects of its body plan (e.g. uniramous antennae, endopod/exopod configuration), Kunmingella possesses several features (e.g. antennal morphology, post-antennular appendages with 5-segmented endopods) which support the view that bradoriids may be very early derivatives of the stem line Crustacea.  相似文献   

3.
The Chengjiang Lagerstätte in the Lower Cambrian of South China yields a small, larva‐like arthropod, which was considered to be a protaspis of naraoiids by many authors. The discovery of a large number of well‐preserved specimens from many new localities has allowed the original study to be revised. The relatively large size, stable morphology and unusual structure of the appendages indicate that these specimens represent adults of a new arthropod, Primicaris larvaformis. The larva‐like outline is considered to have arisen by the heterochronic process of progenesis. In addition, this animal displays primitive aspects of bodyplan and limb morphology that suggest a basal position within arachnomorphs, or perhaps even arthropods, and the similarities to the Vendian arthropod‐like animal Parvancorina probably provide an evolutionary link between Vendian forms and Cambrian arthropods.  相似文献   

4.
Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 (ca 518 Ma), a dating that is compatible with molecular estimates for these splits.  相似文献   

5.
The carapace of Recent crustaceans such as myodocope ostracodes and phyllocarids is pervaded with well-developed anastomosing sinuses conveying hemolymph from the metabolizing organs to the dorsal heart. The inner lamella cuticle, which separates the sinuses from seawater, is thin enough to allow gaseous diffusion (e.g., O2 uptake) over its surface. Comparable radiating and/or anastomosing features, of possible vascular origin, are herein recognized in several possible Crustacea from the Cambrian: cambriid, svealutiid, hipponicharionid and beyrichonid Bradoriida and in Carnarvonia from the middle Cambrian Burgess Shale. The vascular network is basically the same in these groups, consisting of sinuses radiating from supposed adductorial areas or from inferred areas of dorsal attachment of the body. The integumental (carapace sinuses) and branchial (gills) systems of respiration in crustaceans and crustacean-like animals were probably already differentiated by the middle Cambrian. The oldest record of probable integumental circulation is in the bradoriid Petrianna from the early Cambrian of Greenland. Similar circulatory systems may be represented by radiating ridges on the cephalon of other Cambrian arthropod groups such as the arachnomorphs ( Burgessia ) and trilobites ( Naraioa ) and may also be manifest in the carapaces of Ordovician-Devonian leperditicope ostracodes. Organs on the thoracopods of Cambrian supposed crustaceans, such as Canadaspis , resemble the foliaceous thoracic gills of Recent nebaliid phyllocarids and therefore may have served the same (respiratory) function.  相似文献   

6.
Exceptional fossil specimens with preserved soft parts from the Maotianshan Shale (ca 520 Myr ago) and the Burgess Shale (505 Myr ago) biotas indicate that the worldwide distributed bivalved arthropod Isoxys was probably a non-benthic visual predator. New lines of evidence come from the functional morphology of its powerful prehensile frontal appendages that, combined with large spherical eyes, are thought to have played a key role in the recognition and capture of swimming or epibenthic prey. The swimming and steering of this arthropod was achieved by the beating of multiple setose exopods and a flap-like telson. The appendage morphology of Isoxys indicates possible phylogenetical relationships with the megacheirans, a widespread group of assumed predator arthropods characterized by a pre-oral ‘great appendage’. Evidence from functional morphology and taphonomy suggests that Isoxys was able to migrate through the water column and was possibly exploiting hyperbenthic niches for food. Although certainly not unique, the case of Isoxys supports the idea that off-bottom animal interactions such as predation, associated with complex feeding strategies and behaviours (e.g. vertical migration and hunting) were established by the Early Cambrian. It also suggests that a prototype of a pelagic food chain had already started to build-up at least in the lower levels of the water column.  相似文献   

7.
The anatomy of the arthropod Squamacula clypeata Hou and Bergström, 1997 from the Lower Cambrian Chengjiang Lagersta¨tte is redescribed based on four newly excavated specimens. The new material was collected from localities recently discovered in the Kunming area, Yunnan Province, south-west China, and preserves remarkable details of the ventral morphology, revealed by preparation. Squamacula clypeata is dorsoventrally flattened and rounded in outline. The cephalon was covered by a wide, short shield, with a large doublure and a pair of uniramous antennae on the ventral side. The thorax consists of nine somites, each protected by a tergite and carrying at least one pair of biramous limbs. The pygidium is covered with a small rounded tergum. The endopod is segmented, equipped with short spines on the inner margin of the coxa and a claw-like structure distally, and the exopod flap-like, fringed with setae. The limbs in the pygidium are like those in the thorax in shape. Squamacula was most probably a nektobenthic predator. The spinose endopod could walk, grasp and grind. The large flap-like exopod was adapted for swimming and respiration. Its affinities lie with the Arachnomorpha, but the relationships with other known taxa remain ambiguous.  相似文献   

8.
Although priapulid worms form a relatively small phylum in present-day marine environments, they were important animals in Cambrian endobenthic communities. Two Early Cambrian priapulids, namely Xiaoheiqingella peculiaris and Yunnanpriapulus halteroformis nov. gen., nov. sp. from the Maotianshan Shale Lagerstätte of SW China are revised and described. Several key-features of the body plan of Recent Priapulidae are recognized in these two forms: 1) the four-fold body division (introvert, neck, trunk, and caudal appendage); 2) the well-developed introvert armed with ca. 25 longitudinal rows of scalids; 3) the caudal appendage; 4) the pharyngeal teeth arranged in a pentagonal disposition (Xiaoheiqingella); 5) the ventral nerve cord present in Yunnanpriapulus. This morphology indicates close evolutionary relationships with modern priapulids. Xiaoheiqingella and Yunnanpriapulus nov. gen. are tentatively placed within the recent family Priapulidae. The Priapulidae lineage may therefore have a remote origin (Early Cambrian) much older than was previously assumed (Priapulites; Late Carboniferous). The functional morphology of Xiaoheiqingella and Yunnanpriapulus nov. gen. suggests that these two worms were chiefly carnivorous with possible occasional mud-eating habits.  相似文献   

9.
Accurate information on the anatomy and ecology of worms from the Cambrian Lagerstätten of SW China is sparse. The present study of two priapulid worms Anningvermis n. gen. and Corynetis Luo & Hu, 1999 from the Lower Cambrian Maotianshan Shale biota brings new information concerning the anatomical complexity, functional morphology and lifestyles of the Early Cambrian priapulids. Comparisons are made with Recent priapulids from Sweden (live observations, SEM). The cuspidate pharyngeal teeth of Anningvermis (circumoral pentagons) and the most peculiar radiating oral crown of Corynetis added to the very elongate pharynx of these two forms are interpreted as two different types of grasping apparatus possibly involved in the capture of small prey. Corynetis and Anningvermis are two representative examples of the Early Cambrian endobenthic communities largely dominated by priapulid worms (more than ten species in the Maotianshan Shale biota) and to a much lesser extent by brachiopods. Corynetis and Anningvermis were probably active mud-burrowers and predators of small meiobenthic animals. Likewise predator priapulid worms exploited the interface layer between the seawater and bottom sediment, where meiobenthic organisms were abundant and functioned as prey. This implies that complex prey-predator relationship between communities already existed in the Early Cambrian. This study also shows that the circumoral pentagonal teeth and caudal appendage were present in the early stages of the evolutionary history of the group and were important features of the priapulid body plan already in the Early Cambrian. Two new families, one new genus and new species are introduced and described in the appendix.  相似文献   

10.
The morphology of two new bivalved arthropods, Loricicaris spinocaudatus gen. et sp. nov. and Nereocaris briggsi sp. nov. from the middle Cambrian (Series 3, Stage 5) Burgess Shale Formation (Collins Quarry locality on Mount Stephen, Yoho National Park, British Columbia, Canada), is described. The material was originally assigned to the genus Branchiocaris, but exhibits distinctive character combinations meriting its assignment to other taxa. Loricicaris spinocaudatus possesses an elongate and spinose abdomen comparable to the contemporaneous Perspicaris and Canadaspis, as well as chelate second head appendages and subtriangular exopods, comparable to Branchiocaris. Nereocaris briggsi possesses a laterally compressed carapace, elongate and delicate appendages and a medial eye located between a pair of lateral eyes on a rhomboidal eye stalk. Although undoubtedly congeneric with Nereocaris exilis from a slightly younger horizon of the Burgess Shale Formation, N. briggsi differs in overall proportions and segment number, warranting assignment to a new species. The newly described taxa were coded into an extensive cladistic analysis of 755 characters, and 312 extinct and extant panarthropods, including a variety of Cambrian bivalved arthropods from both the Burgess Shale and the Chengjiang Lagerstätten. Cambrian bivalved arthropods consistently resolved as a paraphyletic assemblage at the base of Arthropoda. Important innovations in arthropod history such as the specialization of the deutocerebral head appendages and a shift from a nekton‐benthic deposit feeding habit to a benthic scavenging/predatory habit, the symplesiomorphic feeding condition of Euarthropoda (crown‐group arthropods), were found to have occurred among basal bivalved arthropods.  相似文献   

11.
Simultaneously with the development of animal body plans, probably before the Precambrian, there was an explosive diversification of visual systems. Competition of performance in these visual systems was a critical factor in the evolution of life systems.
Here we analyse the visual system in the lobopod Miraluolishania haikouensis ( Liu et al ., 2004 ) from the Lower Cambrian Chengjiang Lagerstätte, Kunming, China. It consists of a very small eye with a miniscule lens. A physical problem lies in the fact that due to the usual refractive conditions of such a lens, it hardly represents an improvement of the visual quality over the basal pit- or pinhole camera eyes. To develop such a lavish visual system, however, would not have been of any value, if it achieved no more than an equal level or represented even a retrograde step in evolutionary progress. We show how this system may have allowed pattern recognition even under poor light conditions. Optimization of such a tiny eye is costly but is not 'a wasted effort' in evolution. In M. haikouensis ( Liu et al. , 2004 ), an excellently adapted miniscule visual system has become possible.  相似文献   

12.
The group Cnidaria includes 'jellyfish', soft-bodied anemone and anemone-like forms and calcified corals. These diploblastic organisms have a fossil record extending back to the earliest metazoans of the Neoproterozoic; however certain cnidarians of the subclass Zoantharia, characterized by soft-bodied anemone-like forms, are absent or poorly represented in the fossil record. Despite the paucity of fossils, it is thought that calcification by soft anemone-like animals was responsible for producing the skeleton that allowed the preservation of the first corals. We report discovery of an abundant assemblage of in situ soft-bodied polyps with tissues. They are preserved in exquisite detail and come from the well-known Lower Cambrian Chengjiang biota of Yunnan, China. The soft-bodied polyps display a simple anatomy that is comparable to some extant anemones of the order Actinaria. The new fossils are assigned to Archisaccophyllia kunmingensis n. gen. et n. sp. Their simple and conservative form suggests that these fossils may represent some kind of ancestral rootstock. The preserved life assemblage provides a unique snapshot of Lower Cambrian anemone life and provides clues for relationships with extant actiniarians as well as calcified corals.  相似文献   

13.
《Palaeoworld》2015,24(4):400-407
In Series 2 and 3 Cambrian of Guizhou Province, China, most echinoderms inhabited deeper/quieter water and were attached directly to siliciclastic substrate or biodetritus by biogluing (extrusion of extensible collagen). Feeding postures of abundant long stalked gogiids (e.g., Sinoeocrinus) from these beds were interpreted to have heeled over in the current from the thin flexible distal end of the stalk, with the brachioles streaming in a loose bundle, down current from the theca. To test these and other feeding posture assumptions, 1:1 scale models (holdfast, stalk, and theca) of three genera were carved from soft rubber and brachioles were modeled from braided fishing line. By varying current velocities long stalked flume models did not significantly heel over. Brachioles, both straight and spiraled, extended vertically from the theca in an (elliptical) cone and distally curved downstream. Disrupted flow around straight brachioles (Sinoeocrinus) kept them somewhat evenly spaced. Spiraled brachioles (Guizhoueocrinus, Globoeocrinus) are initially straight and angle outwards so that each proximal end defines a sector over the theca; this spacing keeps the brachioles free from tangling distally. Biogluing the animal to the bottom or to biodetritus seems to be correctly interpreted from the morphological evidence. Superglue was used as the proxy gluing agent for the models, success was limited. The dewatered, siliciclastic, non-bioturbated, seafloor could be only partly reconstructed and the somewhat viscous glue did not deeply penetrate the illite substrate. It is probable that bioglue had low viscosity, penetrated the sediment easily, and was able to agglutinate a large three dimensional anchoring body of sediment without (as is commonly observed) disrupting bedding.  相似文献   

14.
《Zoologischer Anzeiger》2014,253(2):164-178
Sidneyia inexpectans Walcott, 1911 from the Cambrian Series 3 Burgess Shale of British Columbia is largely accepted as a representative of the artiopodans, an assemblage of Paleozoic arthropod taxa, including trilobites and their immediate relatives. Its appendage morphology was never fully understood, but the exopod seemed to differ from that of other artiopodans, except for the shared presence of lamellae. The head was considered to comprise only the ocular and antennular segments, these being covered entirely on the ventral side by a large doublure. This short head was often taken as an evidence for variability of head segment counts in Cambrian arthropods, and to falsify the hypothesis of a head with three postantennular segments in the euarthropod ground pattern. Restudy of a substantial amount of material of S. inexpectans shows that previous interpretations of a short head were based on taphonomically deformed specimens, where the head was either partly folded, or entirely flipped under the thorax, resulting in the dorsal shield being mistaken for an extensive doublure. Rather than an extensive doublure, there is a broad hypostome, and the head comprises ocular, antennular, and at least two postantennular appendage bearing segments. The appendage morphology is shown to be consistent with artiopodan affinities. The exopod is of the bilobate flap-like type with lamellae inserting on the proximal portion, earlier proposed as a potential autapomorphy of Artiopoda. Reinforcement of artiopodan affinities for S. inexpectans and reinterpretation of its head reconciles this species with current understanding of arthropod phylogeny and head segmentation.  相似文献   

15.
Abstract: Abundant material from a new quarry excavated in the lower Cambrian Emu Bay Shale (Kangaroo Island, South Australia) and, particularly, the preservation of soft‐bodied features previously unknown from this Burgess Shale‐type locality, permit the revision of two bivalved arthropod taxa described in the late 1970s, Isoxys communis and Tuzoia australis. The collections have also produced fossils belonging to two new species: Isoxys glaessneri and Tuzoia sp. Among the soft parts preserved in these taxa are stalked eyes, digestive structures and cephalic and trunk appendages, rivalling in quality and quantity those described from better‐known Lagerstätten, notably the lower Cambrian Chengjiang fauna of China and the middle Cambrian Burgess Shale of Canada.  相似文献   

16.
Abstract: We redescribe the morphology of Yohoia tenuis (Chelicerata sensu lato) from the Cambrian Burgess Shale Lagerstätte. The morphology of the most anterior, prominent, so‐called great appendage changes throughout ontogeny. While its principal morphology remains unaltered, the length ratios of certain parts of the great appendage change significantly. Furthermore, it possesses a special jack‐knifing mechanism, i.e. an elbow joint: the articulation between the distal one of the two peduncle elements and the most proximal of the four spine‐bearing claw elements. This morphology might have enabled the animal to hunt like a modern spearer‐type mantis shrimp, an analogy enhanced by the similarly large and protruding eyes. For comparison, details of specimens of selected other great‐appendage arthropods from the Lower Cambrian Chengjiang Lagerstätte have been investigated using fluorescence microscopy. This revealed that the morphology of the great appendage of Y. tenuis is much like that of the Chengjiang species Fortiforceps foliosa and Jianfengia multisegmentalis. The morphology of the great appendage of the latter is even more similar to the morphology developed in early developmental stages of Y. tenuis, while the morphology of the great appendage of F. foliosa is more similar to that of later developmental stages of Y. tenuis. The arrangement of the elbow joint supports the view that the great appendage evolved into the chelicera of Chelicerata sensu stricto, as similar joints are found in various ingroup taxa such as Xiphosura, Opiliones or Palpigradi. With this, it also supports the interpretation of the great appendage to be homologous with the first appendage of other arthropods.  相似文献   

17.
Hyoliths were among the earliest biomineralizing metazoans in Palaeozoic marine environments. They have been known for two centuries and widely assigned to lophotrochozoans. However, their origin and relationships with modern lophotrochozoan clades have been a longstanding palaeontological controversy. Here, we provide broad microstructural data from hyolith conchs and opercula from the lower Cambrian Xinji Formation of North China, including two hyolithid genera and four orthothecid genera as well as unidentified opercula. Results show that most hyolith conchs contain a distinct aragonitic lamellar layer that is composed of foliated aragonite, except in the orthothecid New taxon 1 that has a crossed foliated lamellar microstructure. Opercula are mostly composed of foliated aragonite and occasionally foliated calcite. These blade or lath‐like microstructural fabrics coincide well with biomineralization of Cambrian molluscs rather than lophophorates, as exemplified by the Cambrian members of the tommotiid‐brachiopod linage. Accordingly, we propose that hyoliths and molluscs might have inherited their biomineralized skeletons from a non‐mineralized or weakly mineralized common ancestor rather than as a result of convergence. Consequently, from the view of biomineralization, the homologous shell microstructures in Cambrian hyoliths and molluscs strongly strengthen the phylogenetic links between the two groups.  相似文献   

18.
Reconstructing the function and behaviour of extinct groups of echinoderms is problematic because there are no modern analogues for their aberrant body plans. Cinctans, an enigmatic group of Cambrian echinoderms, exemplify this problem: their asymmetrical body plan differentiates them from all living species. Here, we used computational fluid dynamics to analyse the functional performance of cinctans without assuming an extant comparative model. Three-dimensional models of six species from across cinctan phylogeny were used in computer simulations of water flow. The results demonstrate that cinctans with strongly flattened bodies produced much less drag than species characterized by dorsal protuberances or swellings, suggesting the former were more stable on the seafloor. However, unlike the flattened forms, cinctans with high-relief bodies were able to passively direct flow towards the mouth and associated food grooves, indicating that they were capable of more efficient feeding on particles suspended in the water. This study provides evidence of a previously unknown evolutionary trade-off between feeding and stability in Cambrian cinctan echinoderms.  相似文献   

19.
Carbon and oxygen isotopes were studied in fossiliferous Cambrian carbonates in northwestern Hunan Province (South China) and in northern Anhui and southern Shandong provinces (North China). Two major C isotope excursions related to biological events occur in the Wangcun section (Yongshun County, northwestern Hunan), which consists of a slope carbonate sequence (510 m thick) containing abundant trilobites. The first C isotope excursion (δ13C value shifts from -2.3‰ to 2‰) occurs near the boundary between the Qingxudong and Aoxi formations, close to the traditional Lower-Middle Cambrian boundary. The second excursion (δ13C value shifts from 0‰ to 3‰) occurs in the interval between the Linguagnostus reconditus Zone and the Glyptagnostus reticulatus Zone. The base of the G. reticulatus Zone define the base of the Paibi Stage and Furongian Series. Similar C isotope excursions also occur in shallow - water carbonate sections in North China. In Jiagou section near Huainan (Anhui Province), recently considered an important interval for defining the lower-middle Cambrian boundary because of dramatic changes in the trilobite fauna (extinction of redlichiids and appearances of ptychopariids), a negative C isotope excursion (δ13C value shifts from +1.21‰ to -1.93‰) occurs at the top of the lower member of the Mantou Formation. In the Gushan section (Changqing County, Shandong Province), a C isotope excursion (δ13C value shifts from -0.04‰ to 2.23‰) occurs at the base of the Changshan Formation and is coincident with the base of the Chuangia Zone. This excursion can be correlated with the excursion in the lower part of Glyptagnostus reticulatus Zone in the Wangcun section. The above two distinct C isotope excursions, which occur both in slope carbonates in South China and in shallow - water carbonates in North China, have also been recognized in Cambrian sections on other continents, and they coincide with global mass extinctions of trilobites. The two excursions evidently reflect global changes of Cambrian sea level, and they have utility for Cambrian subdivisions and for both regional and global stratigraphic correlation. In addition, a negative carbon excursion below the base of the Ptychagnostus atavus Zone in the Wangcun section supports previous suggestions that the FAD of P. atavus can be considered as a global correlatable horizon within the middle Cambrian.  相似文献   

20.
Three stratigraphic sections in the Cambrian of China that contain complete successions across important biohorizons having chronostratigraphic value, and that may be useful for developing Cambrian stage or series boundaries, are reviewed. The Wuliu section (Guizhou, South China), contains the FAD of Oryctocephalus indicus at 58.2 m above the base of the Kaili Formation. The Wangcun North section (Hunan, South China), contains the FADs of Ptychagnostus (or Acidusus) atavus, Ptychagnostus punctuosus, and Lejopyge laevigata at 1.2 m, 56.7 m, and 111.3 m, respectively, above the base of the Huaqiao Formation. The Xiaoyangqiao section (Jilin, Northeast China), contains the FAD of Cordylodus proavus in the Fengshan Formation at 10.89 m above the zero point of the section. A fourth potential stratotype section, the Wangcun South section (Hunan, South China), which contains the P. atavus, P. punctuosus, and L. laevigata zones, is discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号