首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
药品与个人护理品(Pharmaceuticals and personal care products, PPCPs)包括各种处方药和非处方药(如各类抗生素、人工合成麝香、止痛药、降压药、避孕药、催眠药和减肥药等)与个人护理用品(如化妆品、香料、遮光剂、发胶、染发剂和杀菌剂等)。作为一类新兴环境微污染物,PPCPs因具有潜在的环境毒理学效应和人体健康风险逐渐受到人们的广泛关注。有关PPCPs的生物降解研究已展开了大量的工作并取得了较大进展。文中总结概括了目前国内外PPCPs生物降解方法、功能菌种类、PPCPs的生物降解特性及产物组成与降解途径等,分析了PPCPs微生物降解机理,并对PPCPs生物降解的研究方向进行了展望。  相似文献   

2.
A submerged membrane bioreactor was set up to investigate the removal efficiencies of five pharmaceuticals from synthetic domestic wastewater. Batch experiments were conducted with sterilized sludge and activated sludge to explore the contributions of sludge adsorption and biodegradation for those pharmaceuticals. Notable difference of those pharmaceuticals removal efficiencies was observed, at about 92.2, 90.0, 55.4, 38.5 and 3.2% for acetaminophen, 17β-estradiol, naproxen, diclofenac sodium, and carbamazepine, respectively. Results of batch adsorption experiments via sterilized sludge showed that the removal efficiencies of five pharmaceuticals by sludge adsorption were 7.9, 68.2, 60.1, 40.1 and 71.5%, respectively, which were positively correlated with their octanol–water partition coefficients. Results of batch experiments via activated sludge showed that 83.4% of acetaminophen, 98.0% of 17β-estradiol, and 46.8% of naproxen were removed through the combination of sludge adsorption and biodegradation, while adsorption accumulation in sludge phase was only 1.8, 1.3 and 7.0%. This implies that the removals of these three drugs were mainly achieved by biodegradation. The total removal efficiency of diclofenac sodium was 19.7%, and the contributions of sludge adsorption and biodegradation were 14.9 and 4.8%, which indicated that the removal of diclofenac sodium was mainly achieved by sludge adsorption. The total removal efficiency of carbamazepine was only 8.9% and this implies that neither sludge adsorption nor biodegradation is effective for its removal.  相似文献   

3.
Pharmaceuticals and personal care products (PPCPs) consist of a variety of compounds extensively used for the treatment of human and animal diseases and for health or cosmetic reasons. PPCPs are considered as emerging environmental contaminants due to their ubiquitous presence in the environment and high environmental risks. In wastewater treatment plants using conventional activated sludge processes, many PPCPs cannot be efficiently removed. Therefore, there is an increasing need for more effective and cost-efficiency ways of removing PPCPs while treating wastewater. Algae-based technologies have recently attracted growing attentions for their potential application in wastewater treatment and hazardous contaminant removal, which are advantages in reducing operation cost while generating valuable products and sequestrating greenhouse gases at the same time. This work reviews the up-to date researches to reveal potential toxic effects of PPCPs on algae and algae-bacteria consortia, identify mechanisms involved in PPCP removal, and assess the fate of PPCPs in algae-based treatment systems. Current researches suggest that algae and algae-bacteria consortia have great potentials in PPCP removal but more works are required before algae-based technologies can be implemented in large scales. Knowledge gaps are identified and further research focuses are proposed in this review.  相似文献   

4.
Adaptive response of microbial communities to soluble microbial products   总被引:1,自引:0,他引:1  
We carried out two experiments to study the influence of soluble microbial products (SMP) on biomass concentration [defined as mixed liquor suspended solids (MLSS)] and removal of soluble biological and chemical oxygen demands (sBOD5 and sCOD): (1) SMP were allowed to accumulate, and (2) SMP content was artificially reduced by washing the biomass. The daily initial sCOD in both experiments was kept constant at 859±6 mg/l for 16 days. In experiment 1, the highest sCOD removal (80%) occurred during the first day. Thereafter, it decreased successively to 40% [sludge retention time (SRT), 12 days], after which it increased steadily to 50±4%. Variations in residual sCOD were accompanied by variations in sBOD5, showing that the biodegradability of the accumulated SMP components was changing. MLSS fluctuated within the range 1,200±25–1,993±58 mg/l. We attributed the irregular accumulation of the biomass to variations in the biodegradability of SMP components. The initial sBOD5/MLSS ratio varied according to variations in initial sBOD5 and MLSS, whereas the residual ratio was constant at 0.025±0.008. This indicated a direct relationship between the concentrations of biomass and SMP produced. In experiment 2, MLSS increased from 1,200±25 to a constant value (2,810±16 mg/l; SRT, 12 days). After this time, no decrease or increase in MLSS was observed. Correspondingly, sCOD and sBOD5 removal increased from 80–97 to 84–99%. A stable microbial community that could consume organic matter efficiently was developed under these conditions.  相似文献   

5.
Soluble microbial products (SMP) are organics produced by microorganisms as they degrade substrates. The available literature does not reveal how SMP affect and regulate microbial activities. In this study, we monitored variations in pH, dissolved oxygen concentration, soluble biological and chemical oxygen demands (sBOD5 and sCOD) as a measure of microbial activity in synthetic wastewater. Aerobic degradation tests were carried out under the following conditions: aeration, 1,500 cm3 /min; initial sBOD5, 515±5 mg/l; initial sCOD, 859±6 mg/l; initial biomass concentration (defined as mixed liquor suspended solids), 1,200±25 mg/l; sludge retention time, 24 h; and temperature, 20±1°C. The study involved non-acclimated biomass (R0 flora), biomass developed in the presence of SMP (R1 flora), and biomass developed in reduced level of SMP (R2 flora). We also determined which of these flora produced more refractory SMP. The results showed that R2 flora utilized the synthetic feed more quickly, and produced less refractory organic matter than R0 and R1 flora. The production of more refractory organics by R0 and R1 flora shows that not all the biomass was active. R1 flora degraded the substrates irregularly, suggesting that some microbes were dependent on the metabolic products of those that could utilize the feed components. These results show that production of SMP also depends on the prior substrates and on the ability of the flora to respond to changes in substrate composition.  相似文献   

6.
7.
The performance of a mixed-culture on the removal of caffeine (CFN), sulfamethoxazole (SMX), ranitidine (RNT), carbamazepine (CZP) and ibuprofen (IBP) in a suspended growth reactor has been studied. The sorption and biodegradation of these compounds were examined when they were individually or simultaneously tested. The sorption of individual compounds was significantly low except from RNT (Kd = 0.42 L/g). In contrast, the sorption of SMX and CFN increased in detriment of RNT when all the pharmaceutical compounds were simultaneously present. The biodegradation removal also exhibited significant differences. Thus, the simultaneous treatment showed higher biodegradation rates (Kb up to 97.55 × 10−6 L/mg h) than the individual treatment (Kb up to 8.13 × 10−6 L/mg h) of the pharmaceuticals. In general, the simultaneous treatment leads to increased sorption distribution coefficients and biodegradation rates. Results seem to reveal that the enhanced biomass efficiency on the simultaneous elimination process was due to the synergistic effects of pharmaceutical compounds onto mixed-culture. During the simultaneous removal, CFN, SMX and CZP were removed consistently (5.3 ± 4.4%, 73.2 ± 21.3% and 4.2 ± 2.3%, respectively), whereas RNT and IBP showed an unsteady removal over time. Finally, a kinetic model capable of describing the influence of biomass growth and nutrients utilization on the sorption and biodegradation of the pollutants was successfully demonstrated.  相似文献   

8.
The possibility of enhancing the effectiveness of the biodegradation process of potato wastewater was evaluated. The effect of wastewater pollution load, dilution rate and oxygen supplementation during the thermophilic aerobic continuous utilization process on biodegradation of the main organic pollutants was investigated. Aeration performed using a stirred tank reactor (1.5 vvm, 300 rpm, 55 °C) proved to be not sufficient to provide aerobic conditions. During the continuous process, the amount of oxygen introduced into the wastewater was totally utilized by the microflora. The accumulation and decomposition of the fermentative metabolism products of the Bacillus mixed culture during oxygen limitation and supplementation were analyzed. Under microaerobic conditions (DOT < 1 %), a biosynthesis of acetic acid was observed up to a concentration of 6.5 g/dm3. After chemostat conditions were achieved, the level of acetic acid stabilized at 2.2 g/dm3. The addition of oxygen for aeration allowed a total decomposition of organic acids like acetic and lactic acid (the by‐products were synthesized from partially oxidized substrates) as well as an increase in COD reduction of the wastewater (from 66 % to 79 %). The periodic fortification of aeration with pure oxygen is proposed for critical situations during the continuous wastewater biodegradation when an unexpected inflow of highly polluted wastewater occurs in the system.  相似文献   

9.
As a consequence of insufficient removal during treatment of wastewater released from industry and households, different classes of organic micropollutants are nowadays detected in surface and drinking water. Among these micropollutants, bioactive substances, e.g., endocrine disrupting compounds and pharmaceuticals, have been incriminated in negative effects on living organisms in aquatic biotope. Much research was done in the last years on the fate and removal of those compounds from wastewater. An important point it is to understand the role of applied treatment conditions (sludge retention time (SRT), biomass concentration, temperature, pH value, dominant class of micropollutants, etc.) for the efficiency of conventional treatment plants (CTP) and membrane bioreactors (MBR) concerning the removal of micropollutants such as pharmaceuticals, steroid- and xeno-estrogens. Nevertheless, the removal rates differ even from one compound to the other and are related to the physico-chemical characteristics of the xenobiotics.  相似文献   

10.
The advantages of the analysis of electrical impedance changes for the prediction of the metabolic activity of mixed Bacillus cultures used for high temperature industrial wastewater utilization are demonstrated. The primary aim of this study was to investigate the possibilities of a fast assessment of the biodegradative capabilities of microorganisms, their requirements regarding the medium composition as well as the inhibiting effect of high‐strength (i.e., highly concentrated) wastewaters on microbial growth. Four mixed Bacillus cultures were cultivated at 45 and 55 °C on two kinds of wastewater from the potato starch industry. The course of changes in the electrical impedance during the cultivation of the bacteria in the examined wastewaters was described by the mathematical Gompertz model. Three kinetics parameters (maximum rate of impedance changes, Imax; the time necessary to reach, Imax, TI; and the duration of the lag phase, λ) were proposed for the statistical analysis of the bacterial metabolic activity. The temperature of the biodegradation process and the type and strength of the wastewater significantly influenced the microbial metabolic activity of the mixed bacterial cultures used. Monitoring of the impedance changes, caused by microbial metabolism, and its proposed mathematical specification allowed for predicting the dynamics of the microbiological degradation of wastewater and estimating the inhibiting effects of these media on the microorganisms.  相似文献   

11.
Nitrogen removal in constructed wetland systems   总被引:1,自引:0,他引:1  
Since the mid 1990s, constructed wetlands have been increasingly used as a low‐energy ‘green’ technique, in the treatment of wastewater and stormwater, driven by the rising cost of fossil fuels and increasing concern about climate change. Among various applications of these wetlands, a significant area is the removal of nitrogenous pollutants to protect the water environment and to enable effective reclamation and reuse of the wastewater. This paper provides a review of the current state of nitrogen removal technology, focusing on existing types of wetlands, the mechanisms of nitrogen removal, major environmental factors relative to nitrogen removal, and the operation and management of the wetlands.  相似文献   

12.
随着医药及洗化行业的大规模发展,药品及个人护理用品(PPCPs)的生产和使用量迅猛增长,导致它们在水、土壤和大气环境中均有残留.但直到20世纪90年代末,它们才被看作为一大类环境污染物而被广泛关注.由于PPCPs被持续不断地输入环境,它们在环境中的残留浓度呈上升趋势,并逐渐显现出对微生物以及动植物的生态毒性,对人类也具有潜在的生态风险.本文在总结相关研究的基础上,分析了环境中PPCPs的主要污染来源以及其在环境中的残留浓度;评述了环境中残留的PPCPs对微生物、动植物以及人类的生态毒性;并根据目前对PPCPs的研究进展,提出了今后需要加强研究的科学问题.  相似文献   

13.
卡马西平降解菌的筛选及降解特性研究   总被引:3,自引:0,他引:3  
药品和个人护理品类污染物日益成为新兴污染物研究的重点, 药品卡马西平因具有多种药效被广泛使用, 在环境中频繁被检出, 且浓度较高, 不易去除, 通常作为环境中药品和个人护理品污染状况的指示化合物。本研究从某制药厂的污水处理厂中分离到一株细菌HY-7, 能以卡马西平为唯一碳源、氮源和能源生长, 通过生理生化以及16S rDNA、gyrB基因序列分析鉴定并命名为Acinetobacter sp. HY-7。该菌株生长和降解卡马西平的最适条件为25°C和pH 6.0, 经HPLC分析10 d内能将初始浓度为20 mg/L的卡马西平降解48%。菌株HY-7还能以邻苯二酚、吲哚、萘、蒽等芳香族化合物为唯一碳源生长。  相似文献   

14.
As part of ongoing investigations into the biological degradation of biomaterials, methods have been developed to isolate and chemically analyze polymer biodegradation products. The use of these methods can provide information on the biodegradation product profiles and yield concentration levels for the isolated products. The latter information is required to assess the toxicological nature of biomaterials and their related degradation products. In this study a model biomedical polyurethane was synthesized with toluene diisocyante, polyester diol and ethylene diamine, and then incubated at 37°C in a biological solution containing enzyme. The biodegradation products were isolated from the in vitro system and prepared for HPLC analysis, by using a combination of ultrafiltration, freeze drying and liquid-solid extraction. The ultrafiltration and the liquid-solid extraction effectively removed protein contamination. The separation of more than 20 degradation products, with gradient HPLC, was optimized using a photodiode array detector. The separated degradation products were identified using a tandem mass spectrometer. The model polyurethane was labeled with 14C in different segments, in order to assist in confirming the efficiency of the sample preparation and isolation methods. A detection limit of 2 ng was found. No toluene diamine - a suspected human carcinogen associated with some medical implants - could be found in the test samples. This represents a significant finding since the amount of this injected samppe actually contained a total of 28 μg of degradation products isolated from the incubation medium.  相似文献   

15.
Plant molecular farming: systems and products   总被引:19,自引:0,他引:19  
Plant molecular farming is a new and promising industry involving plant biotechnology. In this review, we describe several diverse plant systems that have been developed to produce commercially useful proteins for pharmaceutical and industrial uses. The advantages and disadvantages of each system are discussed. The first plant-derived molecular farming products have reached the marketplace and other products are poised to join them during the next few years. We explain the rationale for using plants as biofactories. We also describe the products currently on the market, and those that appear likely to join them in the near future. Lastly, we discuss the issue of public acceptance of molecular farming products.Communicated by P.P. Kumar  相似文献   

16.
The wastewater treatment plants produce large quantities of biomass (sludge) that require about one-third of the total inversion and operation plant costs for their treatment. By the microorganisms immobilization it is possible to handle high cell concentration in the reactor, increasing its efficiency, reducing the loss of biomass and the wash out is avoided. Moreover, there is no cell growth then the sludge production is reduced. In this study, the COD removal and VSS variation were modeled in a tubular reactor with activated sludge immobilized in Ca-alginate. Moreover, two aspects that are commonly not considered in the performance of the actual reactors of this kind were introduced; the performance in non-steady state and the dispersion effect. The model was calibrated with an actual wastewater taken out from a Mexican wastewater treatment plant. The results of the performance of the tubular bioreactor at different scenarios (i.e., different residence time and VSS in the reactor) are presented. With longer residence times and higher VSS concentration in the Ca-alginate beads in the tubular bioreactor it is possible to increase the time operation of the bioreactor and to treat higher volumes of wastewater. During the process, the sludge generation was drastically reduced and it is possible to remove nitrogen form the wastewater making this process more attractive.  相似文献   

17.
生物滴滤池中废气有机物的生物降解   总被引:1,自引:0,他引:1  
生物滴滤法是一种经济、有效的有机废气处理方法。从填料的选择、传质过程、微生物的筛选等几个方面介绍了影响生物滴滤池处理效果的几个关键因素。回顾以前的一些研究成果并对某些重要观点进行了总结与分析,希望能为生物滴滤池在有机废气处理的应用开发提供参考。  相似文献   

18.
Biological denitrification was reviewed regarding its potential application to treating nitrate in industrial wastewater. Although heterotrophic denitrification is an efficient and well-developed process, some carbon content in wastewater is essential to maintain bacterial activity. Because of the high operating cost of heterotrophic denitrification caused by the required addition of a carbon source and potential “carbon breakthrough”, the study of autotrophic denitrification has attracted the interest of numerous researchers. Many advances in autotrophic processes have been made in the application of novel concepts and reaction schemes. While the main advantage of autotrophic bacteria rests on the reduction of operating costs by the replacement of an external carbon source with a cheaper electron donor, further decrease in cost requires additional refinement of these processes, including further improvement of reactor structure and optimization of reaction conditions. In the long term, new concepts are required for a compact wastewater treatment process. This review addresses the state of the art of each electron donor candidate for its potential application to the treatment of industrial wastewater containing nitrate.  相似文献   

19.
Constructed wetlands are among the recently proven efficient technologies for wastewater treatment. Compared to conventional treatment systems, constructed wetlands are low cost, are easily operated and maintained, and have a strong potential for application in developing countries, particularly by small rural communities. However, these systems have not found widespread use, due to lack of awareness, and local expertise in developing the technology on a local basis. This paper summarizes information on current methods used for wastewater treatment in developing countries, and briefly gives basic information on wetlands. The paper further examines the potential of constructed wetlands for wastewater treatment and reuse in developing countries by looking at the results of current research initiatives towards implementation of the technology in these countries. Future considerations in choosing constructed wetlands as wastewater treating systems in developing countries are highlighted.  相似文献   

20.
Polyalcohol ethoxylate (PAE), an anionic surfactant, is the primary component in most laundry and dish wash detergents and is therefore highly loaded in domestic wastewater. Its biodegradation results in the formation of several metabolites and the fate of these metabolites through wastewater treatment plants, graywater recycling processes, and in the environment must be clearly understood. Biodegradation pathways for PAE were investigated in this project with a municipal wastewater microbial consortium. A microtiter-based oxygen sensor system was utilized to determine the preferential use of potential biodegradation products. Results show that while polyethylene glycols (PEGs) were readily degraded by PAE acclimated microorganisms, most of the carboxylic acids tested were not degraded. Biodegradation of PEGs suggests that hydrophobe–hydrophile scission was the dominant pathway for PAE biodegradation in this wastewater community. Ethylene glycol (EG) and diethylene glycol (DEG) were not utilized by microbial populations capable of degrading higher molecular weight EGs. It is possible that EG and DEG may accumulate. The microtiter-based oxygen sensor system was successfully utilized to elucidate information on PAE biodegradation pathways and could be applied to study biodegradation pathways for other important contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号